Journal of Electronic Materials

, Volume 42, Issue 1, pp 15–20 | Cite as

The Influence of Interface States at the Schottky Junction on the Large Signal Behavior of Copper-Gate GaN HEMTs

  • Michele Esposto
  • Valerio Di Lecce
  • Matteo Bonaiuti
  • Alessandro Chini
Article

The large signal characteristics of Cu-gate and Ni/Au-gate AlGaN/GaN high-electron-mobility transistors (HEMTs) were compared. The tested devices were fabricated on two different parts of the same wafer following the same fabrication steps, the only difference being in the Schottky contact material. Comparison of the direct-current (DC) and radio frequency (RF) characteristics points out a critical drain current collapse in the Cu-gate devices, with detrimental effects on the RF performance, whereas the Ni/Au-gate HEMTs performed properly during DC, pulsed, and RF measurements. Investigations on the drain current transients and on the IDVGS characteristics, obtained by pulsed signals, suggest the presence of an acceptor trap density in the AlGaN barrier, beneath the Cu Schottky gate contact, responsible for the poorer performance of the Cu-gate device; an activation energy of 430 meV was extracted. This defectivity seemed to be due to a copper diffusion event, activated by thermal stress induced in the sample during the plasma-enhanced chemical vapor deposition (PECVD) of SiN. Numerical simulations carried out on the tested structure qualitatively support the presence of a trap density explaining the nature of the observed drain current transients.

Keywords

AlGaN/GaN high-electron-mobility transistors (HEMTs) copper diffusion copper gate drain current collapse interface trap Schottky contact 

References

  1. 1.
    U.K. Mishra, L. Shen, T.E. Kazior, and Y.-F. Wu, Proc. IEEE 96, 287 (2008).CrossRefGoogle Scholar
  2. 2.
    A.C. Schmitz, A.T. Ping, M. Asif Khan, Q. Chen, J.W. Yang, and I. Adesida, J. Electron. Mater. 27, 255 (1998).Google Scholar
  3. 3.
    G.H. Jessen, R.C. Fitch, J.K. Gillespie, G.D. Via, N.A. Moser, M.J. Yannuzzi, A. Crespo, R.W. Dettmer, and T.J. Jenkins, Proc. IEEE GaAs Symp., Nov. 2003, pp. 277–279.Google Scholar
  4. 4.
    Y. Yamashita, A. Endoh, K. Ikeda, K. HikosakaL, T. Mimura, M. HigashiwakiL, T. Matsui, and S. Hiyamizu, J. Vac. Sci. Technol. B, Microel. Process. Phenom. 23, L13 (2005).CrossRefGoogle Scholar
  5. 5.
    J.-P. Ao, D. Kikuta, N. Kubota, Y. Naoi, and Y. Ohno, IEEE Electron. Dev. Lett. 24, 500 (2003).CrossRefGoogle Scholar
  6. 6.
    H.F. Sun, A.R. Alt, and C.R. Bolognesi, IEEE Electron. Dev. Lett. 28(5), May 2007.Google Scholar
  7. 7.
    L. Wang, M.I. Nathan, T.-H. Lim, M.A. Khan, and Q. Chen, Appl. Phys. Lett. 68, 1267 (1996).CrossRefGoogle Scholar
  8. 8.
    R. Vetury, N.Q. Zhang, S. Keller, and U.K. Mishra, IEEE Trans. Electron. Dev. 48, 560 (2001).CrossRefGoogle Scholar
  9. 9.
    Y.-F. Wu, D. Kapolnek, J. Ibbetson, N.-Q. Zhang, P. Parikh, B. Keller, and U.K. Mishra, 1999 IEDM Technical Digest, Dec. 1999, pp. 925–927.Google Scholar
  10. 10.
    J.R. Shealy, V. Kaper, V. Tilak, T. Prunty, J.A. Smart, B. Green, and L.F. Eastman, Condens. Matter 14, 3499 (2002).CrossRefGoogle Scholar
  11. 11.
    M. Hiroshi, K. Hisao, and H. Kenji, J. Appl. Phys. 81, 7746 (1997).CrossRefGoogle Scholar
  12. 12.
    E.R. Weber, Appl. Phys. A 30, 1 (1983).CrossRefGoogle Scholar
  13. 13.
    A. Cros, M.O. Aboelfotoh, and K.N. Tu, J. Appl. Phys. 67, 3328 (1990).CrossRefGoogle Scholar
  14. 14.
    C.-A. Chang, J. Appl. Phys. 67, 566 (1990).CrossRefGoogle Scholar
  15. 15.
    P.H. Wohlbier, (Trans. Tech, OH, 1975), Vol. 10, pp. 89–91.Google Scholar
  16. 16.
    C.-Y. Chen, L. Chang, E.Y. Chang, S.-H. Chen, and D.-F. Chang, Appl. Phys. Lett. 77(21), Nov. 20, 2000.Google Scholar
  17. 17.
    D.A. MacQuistan and F. Weinberg, J. Cryst. Growth 110, 745 (1991).CrossRefGoogle Scholar
  18. 18.
    R.N. Hall and J.H. Racette, J. Appl. Phys. 35, 379 (1964).CrossRefGoogle Scholar
  19. 19.
    C.S. Fuller, J.M. Whelan, and J. Phys, Chem. Solids 6, 173 (1958).CrossRefGoogle Scholar
  20. 20.
    Y. Furukawa, J. Phys. Chem. Solids 26, 1869 (1965).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Michele Esposto
    • 1
  • Valerio Di Lecce
    • 1
  • Matteo Bonaiuti
    • 1
  • Alessandro Chini
    • 1
  1. 1.Information Engineering DepartmentUniversity of Modena and Reggio EmiliaModenaItaly

Personalised recommendations