Journal of Electronic Materials

, Volume 41, Issue 12, pp 3393–3401 | Cite as

Improved Optoelectronic Properties of Rapid Thermally Annealed Dilute Nitride GaInNAs Photodetectors

  • S.L. Tan
  • C.J. Hunter
  • S. Zhang
  • L.J.J. Tan
  • Y.L. Goh
  • J.S. Ng
  • I.P. Marko
  • S.J. Sweeney
  • A.R. Adams
  • J. Allam
  • J.P.R. David
Article

Abstract

We investigate the optical and electrical characteristics of GaInNAs/GaAs long-wavelength photodiodes grown under varying conditions by molecular beam epitaxy and subjected to postgrowth rapid thermal annealing (RTA) at a series of temperatures. It is found that the device performance of the nonoptimally grown GaInNAs p+in+ structures, with nominal compositions of 10% In and 3.8% N, can be improved significantly by the RTA treatment to match that of optimally grown structures. The optimally annealed devices exhibit overall improvement in optical and electrical characteristics, including increased photoluminescence brightness, reduced density of deep-level traps, reduced series resistance resulting from the GaAs/GaInNAs heterointerface, lower dark current, and significantly lower background doping density, all of which can be attributed to the reduced structural disorder in the GaInNAs alloy.

Keywords

Photodetector dilute nitride GaInNAs annealing defects dark current quantum efficiency 

References

  1. 1.
    M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahiki, and Y. Yazawa, Jpn. J. Appl. Phys. 35, 1273 (1996).CrossRefGoogle Scholar
  2. 2.
    D.J. Friedman, J.F. Geisz, S.R. Kurtz, and J.M. Olson, J. Cryst. Growth 195, 409 (1998).CrossRefGoogle Scholar
  3. 3.
    D.B. Jackrel, S.R. Bank, H.B. Yuen, M.A. Wistey, J.S. Harris, A.J. Ptak, S.W. Johnston, D.J. Friedman, and S.R. Kurtz, J. Appl. Phys. 101, 114916 (2007).CrossRefGoogle Scholar
  4. 4.
    E. Luna, M. Hopkinson, J.M. Ulloa, A. Guzmán, and E. Muñoz, Appl. Phys. Lett. 83, 3111 (2003).CrossRefGoogle Scholar
  5. 5.
    J.S. Ng, W.M. Soong, M.J. Steer, M. Hopkinson, J.P.R. David, J. Chamings, S.J. Sweeney, and A.R. Adams, J. Appl. Phys. 101, 064506 (2007).CrossRefGoogle Scholar
  6. 6.
    J.S. Harris, S.R. Bank, M.A. Wistey, and H.B. Yuen, IEE Proc. Optoelectron. 151, 407 (2004).CrossRefGoogle Scholar
  7. 7.
    T.K. Ng, S.F. Yoon, S.Z. Wang, W.K. Loke, and W.J. Fan, J. Vac. Sci. Technol. B 20, 964 (2002).CrossRefGoogle Scholar
  8. 8.
    W.K. Loke, S.F. Yoon, S. Wicaksono, and B.K. Ng, Mater. Sci. Eng. B 131, 40 (2006).CrossRefGoogle Scholar
  9. 9.
    S.R. Kurtz, A.A. Allerman, E.D. Jones, J.M. Gee, J.J. Banas, and B.E. Hammons, Appl. Phys. Lett. 74, 729 (1999).CrossRefGoogle Scholar
  10. 10.
    T. Kitatani, K. Nakahara, M. Kondow, K. Uomi, and T. Tanaka, J. Cryst. Growth 209, 345 (2000).CrossRefGoogle Scholar
  11. 11.
    M. Kondow and T. Kitatani, Jpn. J. Appl. Phys. 40, 108 (2001).CrossRefGoogle Scholar
  12. 12.
    S. Shirakata, M. Kondow, and T. Kitatani, J. Phys. Chem. Solids 64, 1533 (2003).CrossRefGoogle Scholar
  13. 13.
    M. Kondow, T. Kitatani, and S. Shirakata, J. Phys.: Condens. Matter 16, S3229 (2004).CrossRefGoogle Scholar
  14. 14.
    W.K. Cheah, W.J. Fan, S.F. Yoon, B.S. Ma, T.K. Ng, R. Liu, and A.T.S. Wee, Semicond. Sci. Technol. 21, 808 (2006).CrossRefGoogle Scholar
  15. 15.
    I.R. Sellers, W.-S. Tan, K. Smith, S. Hooper, S. Day, and M. Kauer, Appl. Phys. Lett. 99, 151111 (2011).CrossRefGoogle Scholar
  16. 16.
    M. Henini, Dilute Nitride Semiconductors (Oxford: Elsevier, 2005), pp. 5–6.Google Scholar
  17. 17.
    A.J. Ptak, D.J. Friedman, and S. Kurtz, J. Vac. Sci. Technol. B 25, 955 (2007).CrossRefGoogle Scholar
  18. 18.
    C.M. Wu and E.S. Yang, J. Appl. Phys. 51, 2261 (1980).CrossRefGoogle Scholar
  19. 19.
    M. Kondow, T. Kitatani, S. Nakatsuka, M.C. Larson, K. Nakahara, Y. Yazawa, M. Okai, and K. Uomi, IEEE J. Select. Top. Quant. Electron. 3, 719 (1997).CrossRefGoogle Scholar
  20. 20.
    A. Zemel and M. Gallant, J. Appl. Phys. 64, 6552 (1988).CrossRefGoogle Scholar
  21. 21.
    S. Kurtz, J. Webb, L. Gedvilas, D. Friedman, J. Geisz, J. Olson, R. King, D. Joslin, and N. Karam, Appl. Phys. Lett. 78, 748 (2001).CrossRefGoogle Scholar
  22. 22.
    J.-M. Chauveau, A. Trampert, K.H. Ploog, and E. Tournié, Appl. Phys. Lett. 84, 2503 (2004).CrossRefGoogle Scholar
  23. 23.
    P.W. Yu, G.D. Robinson, J.R. Sizelove, and C.E. Stutz, Phys. Rev. B 49, 4689 (1994).CrossRefGoogle Scholar
  24. 24.
    S.L. Tan, S. Zhang, W.M. Soong, Y.L. Goh, L.J.J. Tan, J.S. Ng, J.P.R. David, I.P. Marko, A.R. Adams, S.J. Sweeney, and J. Allam, IEEE Electron Dev. Lett. 32, 919 (2011).CrossRefGoogle Scholar
  25. 25.
    L.J.J. Tan, W.M. Soong, J.P.R. David, and J.S. Ng, IEEE Trans. Electron Devices 58, 103 (2011).CrossRefGoogle Scholar
  26. 26.
    W. Li, M. Pessa, T. Ahlgren, and J. Decker, Appl. Phys. Lett. 79, 1094 (2001).CrossRefGoogle Scholar
  27. 27.
    W. M. Soong (Ph.D. dissertation, University of Sheffield, 2009).Google Scholar
  28. 28.
    S. Sanguinetti, D. Colombo, M. Guzzi, E. Grilli, M. Gurioli, L. Seravalli, P. Frigeri, and S. Franchi, Phys. Rev. B 74, 205302 (2006).CrossRefGoogle Scholar
  29. 29.
    C.W. Greeff and H.R. Glyde, Phys. Rev. B 51, 1778 (1995).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • S.L. Tan
    • 1
  • C.J. Hunter
    • 1
  • S. Zhang
    • 1
  • L.J.J. Tan
    • 1
  • Y.L. Goh
    • 1
  • J.S. Ng
    • 1
  • I.P. Marko
    • 2
  • S.J. Sweeney
    • 2
  • A.R. Adams
    • 2
  • J. Allam
    • 2
  • J.P.R. David
    • 1
  1. 1.Department of Electronic and Electrical EngineeringUniversity of SheffieldSheffieldUK
  2. 2.Advanced Technology Institute, Faculty of Engineering & Physical SciencesUniversity of SurreyGuildfordUK

Personalised recommendations