TiO2 Coating for SnO2:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to H+ Radical Exposure


Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates SnO2:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a TiO2 stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, TiO2 films revealed insignificant changes in the optical spectra. The initial sheet resistance of the SnO2:F layer was 14 Ω/sq. The deposition of the top TiO2 layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/TiO2 transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of H+ plasma exposure. Regardless of the TiO2 film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive H+ plasma conditions. In this paper we show that ∼50-nm-thick TiO2 coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure.

This is a preview of subscription content, access via your institution.


  1. 1.

    B. O’Regan and M. Grätzel, Nature 353, 737–740 (1991).

    Article  Google Scholar 

  2. 2.

    A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  3. 3.

    M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  4. 4.

    C. Martinet, V. Pillard, A. Gagnaire, and J. Joseph, Non-Cryst. Solids 216, 77 (1997).

    Article  CAS  Google Scholar 

  5. 5.

    D. Manno, G. Ricoci, R. Rella, A. Serra, A. Taurino, and A. Tepore, J. Appl. Phys. 82, 54 (1997).

    Article  CAS  Google Scholar 

  6. 6.

    C.G. Granqvist, Materials Science for Solar Energy Conversion Systems (Oxford: Pergamon, 1991).

    Google Scholar 

  7. 7.

    M. Kambe, M. Fukawa, N. Taneda, and K. Sato, Sol. Energy Mater. Sol. Cells 90, 3014 (2006).

    Article  CAS  Google Scholar 

  8. 8.

    H. Natsuhara, T. Ohashi, S. Ogawa, N. Yoshida, T. Itoh, S. Nonomura, M. Fukawa, and K. Sato, Thin Solid Films 430, 253 (2003).

    Article  CAS  Google Scholar 

  9. 9.

    H. Natsuhara, K. Matsumoto, N. Yoshida, T. Itoh, S. Nonomura, M. Fukawa, and K. Sato, Sol. Energy Mater. Sol. Cells 9, 2867 (2006).

    Google Scholar 

  10. 10.

    K. Sato, Y. Gotoh, Y. Hayashi, K. Adachi, and H. Nishimura, Reports Res. Lab. Asahi Glass Co. Ltd. 40, 233 (1990).

    CAS  Google Scholar 

  11. 11.

    A. Buzas, L. Egerhazi, and Zs. Geretovszky, J. Phys. D Appl. Phys. 4, 085205 (2008).

    Article  Google Scholar 

  12. 12.

    P.J. Martin, R.T. Netterfield, and T.J. Kinder, Thin Solid Films 193, 77 (1990).

    Article  Google Scholar 

  13. 13.

    S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, Chem. Lett. 6, 433 (1996).

    Article  Google Scholar 

  14. 14.

    Z. Zhao, B.K. Tay, and G. Yu, Appl. Opt. 4, 1281 (2004).

    Article  Google Scholar 

  15. 15.

    XPS, Handbook of Elements and Native Oxides (XPS International Inc., Mountain View, 1999).

  16. 16.

    G.E. Muilenberg, eds., Handbook of X-Ray Photoelectron Spectroscopy (Boston: PerkinElmer Corporation, 1979).

    Google Scholar 

  17. 17.

    IEM Databases and Datasets, Russian Foundation of Basic Research, http://database.iem.ac.ru/mincryst/mixipol.php?brook.it1+2. Accessed 21 August 2012.

  18. 18.

    S.R. Yoganarasimhan and C.N.R. Rao, Anal. Chem. 33, 155 (1960).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to M. M. Ristova.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ristova, M.M., Gligorova, A., Nasov, I. et al. TiO2 Coating for SnO2:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to H+ Radical Exposure. Journal of Elec Materi 41, 3087–3094 (2012). https://doi.org/10.1007/s11664-012-2221-4

Download citation


  • TiO2
  • thin-film coating
  • AFM
  • XPS
  • filtered cathodic arc evaporation (FCAE)
  • transmittance
  • reflectance
  • H+ radicals
  • XPS
  • SEM
  • AXRD
  • XRR