Journal of Electronic Materials

, Volume 41, Issue 11, pp 3073–3076 | Cite as

Thermoelectric Properties of Dy-Doped SrTiO3 Ceramics

  • J. Liu
  • C.L. Wang
  • H. Peng
  • W.B. Su
  • H.C. Wang
  • J.C. Li
  • J.L. Zhang
  • L.M. Mei
Article

Abstract

Sr1−xDyxTiO3 (x = 0.02, 0.05, 0.10) ceramics were prepared by the reduced solid-state reaction method, and their thermoelectric properties were investigated from room temperature to 973 K. The resistivity increases with temperature, showing metallic behavior. The Seebeck coefficients tend to saturate at high temperatures, presenting narrow-band behavior, as proved by ab initio calculations of the electronic structure. The magnitudes of the Seebeck coefficient and the electrical resistivity decrease with increasing Dy content. At the same time, the thermal conductivity decreases because the lattice thermal conductivity is reduced by Dy substitution. The maximum value of the figure of merit reaches 0.25 at 973 K for the Sr0.9Dy0.1TiO3 sample.

Keywords

Strontium titanates thermoelectric properties narrow band 

References

  1. 1.
    H. Ohta, Mater. Today 10, 44 (2007).CrossRefGoogle Scholar
  2. 2.
    H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 392, 306 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Ohta, T. Nomura, H. Ohta, and K. Koumoto, J. Appl. Phys. 97, 034106 (2005).CrossRefGoogle Scholar
  4. 4.
    J. Ravichandran, W. Siemons, D.W. Oh, J.T. Kardel, A. Chari, H. Heijmerikx, M.L. Scullin, A. Majumdar, R. Ramesh, and D.G. Cahill, Phys. Rev. B 82, 165126 (2010).CrossRefGoogle Scholar
  5. 5.
    S. Ohta, H. Ohta, and K. Koumoto, J. Ceram. Soc. Jpn. 114, 102 (2006).CrossRefGoogle Scholar
  6. 6.
    N. Wang, H.C. He, X. Li, L. Han, and C.Q. Zhang, J. Alloys Compd. 506, 293 (2010).CrossRefGoogle Scholar
  7. 7.
    J. Liu, H.C. Wang, W.B. Su, C.L. Wang, J.L. Zhang, and L.M. Mei, Solid State Sci. 12, 134 (2010).CrossRefGoogle Scholar
  8. 8.
    Y. Wang and H.J. Fan, Scripta Mater. 65, 190 (2011).CrossRefGoogle Scholar
  9. 9.
    P.P. Shang, B.P. Zhang, J.F. Li, and N. Ma, Solid State Sci. 12, 1341 (2010).CrossRefGoogle Scholar
  10. 10.
    A. Kikuchi, N. Okinaka, and T. Akiyama, Scripta Mater. 63, 407 (2010).CrossRefGoogle Scholar
  11. 11.
    P.P. Shang, B.P. Zhang, Y. Liu, J.F. Li, and H.M. Zhu, J. Electron. Mater. 40, 926 (2011).CrossRefGoogle Scholar
  12. 12.
    J. Liu, C.L. Wang, W.B. Su, H.C. Wang, P. Zheng, J.C. Li, J.L. Zhang, and L.M. Mei, Appl. Phys. Lett. 95, 162110 (2009).CrossRefGoogle Scholar
  13. 13.
    J. Liu, C.L. Wang, W.B. Su, H.C. Wang, J.C. Li, J.L. Zhang, and L.M. Mei, J. Alloys Compd. 492, 54 (2010).CrossRefGoogle Scholar
  14. 14.
    H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, N. Yin, and L.M. Mei, Mater. Res. Bull. 45, 809 (2010).CrossRefGoogle Scholar
  15. 15.
    H. Muta, K. Kurosaki, and S. Yamanaka, J. Alloys Compd. 350, 292 (2003).CrossRefGoogle Scholar
  16. 16.
    T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, Phys. Rev. B 63, 113104 (2001).CrossRefGoogle Scholar
  17. 17.
    M. Onoda and S. Tsukahara, J. Phys.: Condens. Matter. 23, 045604 (2011).Google Scholar
  18. 18.
    R. R. Heikes and R. W. Ure, Thermoelectricity (Interscience: New York, 1961).Google Scholar
  19. 19.
    K. Schwarz, P. Blaha, and G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002).CrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • J. Liu
    • 1
  • C.L. Wang
    • 1
    • 2
  • H. Peng
    • 1
  • W.B. Su
    • 1
  • H.C. Wang
    • 1
  • J.C. Li
    • 1
  • J.L. Zhang
    • 1
    • 2
  • L.M. Mei
    • 1
    • 2
  1. 1.School of PhysicsShandong UniversityJinanPeople’s Republic of China
  2. 2.State Key Laboratory of Crystal MaterialsShandong UniversityJinanPeople’s Republic of China

Personalised recommendations