Journal of Electronic Materials

, Volume 41, Issue 11, pp 3027–3030 | Cite as

Carrier Lifetime Measurements in Long-Wave Infrared InAs/GaSb Superlattices Under Low Excitation Conditions

  • Ding Wang
  • Dmitri Donetsky
  • Seungyong Jung
  • Gregory Belenky
Article

Abstract

Minority carrier lifetime in long-wave infrared (LWIR) type II InAs/GaSb superlattices was studied using the optical modulation response (OMR) technique in wide ranges of excitation and temperature. The measured carrier lifetime was found to increase superexponentially with decreasing excitation power density below the level of 1 mW/cm2 to 2 mW/cm2. The phenomenon was qualitatively explained by the presence of shallow trapping centers.

Keywords

Carrier lifetime long-wave infrared superlattice 

References

  1. 1.
    G.A. Sai-Halasz, R. Tsu, and L. Esaki, Appl. Phys. Lett. 30, 651 (1977).CrossRefGoogle Scholar
  2. 2.
    M. Razeghi, D. Hoffman, B.M. Nguyen, P.Y. Delaunay, E.K.W. Huang, M.Z. Tidrow, and V. Nathan, Proc. IEEE 97, 1056 (2009).CrossRefGoogle Scholar
  3. 3.
    E.R. Youngdale, J.R. Meyer, C.A. Hoffman, F.J. Bartoli, C.H. Grein, P.M. Young, H. Ehrenreich, R.H. Miles, and D.H. Chow, Appl. Phys. Lett. 64, 3160 (1994).CrossRefGoogle Scholar
  4. 4.
    M. Walther, J. Schmitz, R. Rehm, S. Kopta, F. Fuchs, J. Fleiβner, W. Cabanski, and J. Ziegler, J. Cryst. Growth 278, 156 (2005).CrossRefGoogle Scholar
  5. 5.
    A. Khoshakhlagh, E. Plis, S. Meyers, Y.D. Sharma, L.R. Dawson, and S. Krishna, J. Cryst. Growth 311, 1901 (2009).CrossRefGoogle Scholar
  6. 6.
    I. Vurgaftman, E.H. Aifer, C.L. Canedy, J.G. Tischler, J.R. Meyer, J.H. Warner, E.M. Jackson, G. Hildebrandt, and G.J. Sullivan, Appl. Phys. Lett. 89, 121114 (2006).CrossRefGoogle Scholar
  7. 7.
    D.Z.Y. Ting, C.J. Hill, A. Soibel, S.A. Keo, J.M. Mumolo, J. Nguyen, and S.D. Gunapala, Appl. Phys. Lett. 95, 023508 (2009).CrossRefGoogle Scholar
  8. 8.
    I. Vurgaftman, C.L. Canedy, E.M. Jackson, J.A. Nolde, C.A. Affouda, E.H. Aifer, J.R. Meyer, A. Hood, A.J. Evans, and W.T. Tennant, Opt. Eng. 50, 061007 (2011).CrossRefGoogle Scholar
  9. 9.
    D. Donetsky, G. Belenky, S.P. Svensson, and S. Suchalkin, Appl. Phys. Lett. 97, 052108 (2010).CrossRefGoogle Scholar
  10. 10.
    J. Pellegrino and R. DeWames, Proc. SPIE 7298, 72981U (2009).CrossRefGoogle Scholar
  11. 11.
    B.C. Connelly, G.D. Metcalfe, H. Shen, and M. Wraback, Appl. Phys. Lett. 97, 251117 (2010).CrossRefGoogle Scholar
  12. 12.
    D. Donetsky, S.P. Svensson, L.E. Vorobjev, and G. Belenky, Appl. Phys. Lett. 95, 212104 (2009).CrossRefGoogle Scholar
  13. 13.
    N.P. Harder, R. Gogolin, and R. Brendel, Appl. Phys. Lett. 97, 112111 (2010).CrossRefGoogle Scholar
  14. 14.
    K.R. McIntosh, B.B. Paudyal, and D.H. Macdonald, J. Appl. Phys. 104, 084503 (2008).CrossRefGoogle Scholar
  15. 15.
    S. Bandara, P. Maloney, N. Baril, J. Pellegrino, and M. Tidrow, Opt. Eng. 50, 061015 (2011).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Ding Wang
    • 1
  • Dmitri Donetsky
    • 1
  • Seungyong Jung
    • 1
  • Gregory Belenky
    • 1
  1. 1.Department of Electrical and Computer EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations