Skip to main content
Log in

Fabrication of Highly (0 0 l)-Textured Sb2Te3 Film and Corresponding Thermoelectric Device with Enhanced Performance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

An approach for fabrication of highly (0 0 l)-textured Sb2Te3 thin film with layered structure by the magnetron sputtering method is reported. The composition, microstructure, and thermoelectric properties of the thin films have been characterized and measured by x-ray diffraction, scanning electron microscopy with energy-dispersive x-ray spectroscopy, and a thermoelectric (TE) measurement system, respectively. The results show that well-oriented (0 0 l) Sb2Te3 thin film with layered structure is beneficial for improvement of thermoelectric properties, being a promising choice for planar TE devices. The power generation and cooling performance of a layered p-Sb2Te3 film device are superior to those of the ordinary thin-film device. For a typical parallel device with 38 layered Sb2Te3 film elements, the output voltage, maximum power, and corresponding power density are up to 10.3 mV, 11.1 μW, and 73 mW/cm2, respectively, for a temperature difference of 76 K. The device can produce a 6.1 K maximum temperature difference at current of 45 mA. The results prove that enhanced microdevice performance can be realized by integrating (0 0 l)-oriented Sb2Te3 thin films with a layered architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, Thermoelectrics Handbook: Macro to Nano (New York: Taylor & Francis, 2005).

    Book  Google Scholar 

  2. L. Francioso, C.D. Pascali, I. Farella, C. Martucci, P. Cretì, P. Siciliano, and A. Perroneb, J. Power Sources 196, 3239 (2011).

    Article  CAS  Google Scholar 

  3. G.J. Snyder, J.R. Lim, C.K. Huang, and J.P. Fleurial, Nature 2, 528 (2003).

    Article  CAS  Google Scholar 

  4. I.Y. Huang, J.C. Lin, K.D. She, and M.C. Li, Sens. Actuators A 148, 176 (2008).

    Article  Google Scholar 

  5. I. Chowdhury, R. Prasher, K. Lofgory, G. Chrysler, S. Narasimhan, R. Mahajan, R. Alley, and R. Venkatasubramanian, Nat. Nanotechnol. 4, 235 (2009).

    Article  CAS  Google Scholar 

  6. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  7. W.S. Liu, X. Yan, G. Chen, and Z.F. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  8. Z.W. Zhang, Y. Wang, Y. Deng, and Y.B. Xu, Solid State Commun. 151, 1520 (2011).

    Article  CAS  Google Scholar 

  9. Y. Deng, H.M. Liang, Y. Wang, Z.W. Zhang, M. Tan, and J.J. Cui, J. Alloy Compd. 509, 5683 (2011).

    Article  CAS  Google Scholar 

  10. R.S. Makala, K. Jagannadham, and B.C. Sales, J. Appl. Phys. 94, 3907 (2003).

    Article  CAS  Google Scholar 

  11. J.H. Kim, D.Y. Jeong, J.S. Kim, and B.K. Ju, J. Appl. Phys. 100, 123501 (2006).

    Article  Google Scholar 

  12. A.L. Bassi, A. Bailini, C.S. Casari, F. Donati, A. Mantegazza, M. Passoni, V. Russo, and C.E. Bottani, J. Appl. Phys. 105, 124307 (2009).

    Article  Google Scholar 

  13. N. Peranio and O. Eibl, J. Appl. Phys. 100, 114306 (2006).

    Article  Google Scholar 

  14. W.E. Bies, R.J. Radtke, H. Ehrenreich, and E. Runge, Phys. Rev. B 65, 085208 (2002).

    Article  Google Scholar 

  15. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  16. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  17. J. Chen, T. Sun, D.H. Sim, H.Y. Peng, H.T. Wang, S.F. Fan, H.H. Hng, J. Ma, X.D. Chen, T. Wu, and Q.Y. Yan, Chem. Mater. 22, 3086 (2010).

    Article  CAS  Google Scholar 

  18. M. Tan, Y. Wang, Y. Deng, Z.W. Zhang, B.W. Luo, J.Y. Yang, and Y.B. Xu, Sens. Actuators A 171, 252 (2011).

    Article  CAS  Google Scholar 

  19. R. Kato, A. Maesono, and R.P. Tye, Int. J. Thermophys. 22, 617 (2001).

    Article  CAS  Google Scholar 

  20. D.J. Li, M. Tan, G.Q. Liu, H. Liu, and X. Sun, Surf. Coat. Technol. 205, 3791 (2011).

    Article  CAS  Google Scholar 

  21. C. Drasar, M. Steinhart, P. Lostak, H.K. Shin, J.S. Dyck, and C. Uher, J. Solid State Chem. 178, 1301 (2005).

    Article  CAS  Google Scholar 

  22. Y.M. Zuev, J.S. Lee, C. Galloy, H. Park, and P. Kim, Nano Lett. 10, 3037 (2010).

    Article  CAS  Google Scholar 

  23. A. Datta, J. Paul, A. Kar, A. Patra, Z.L. Sun, L.D. Chen, J. Martin, and G. Nolas, Cryst. Growth Des. 10, 3983 (2010).

    Article  CAS  Google Scholar 

  24. S.N. Dhar and C.F. Desai, Philos. Mag. Lett. 82, 581 (2002).

    Article  CAS  Google Scholar 

  25. R.Y. Wang, J.P. Feser, J.S. Lee, D.V. Talapin, R. Segalman, and A. Majumdar, Nano Lett. 8, 2283 (2008).

    Article  CAS  Google Scholar 

  26. J. Martin, L. Wang, L. Chen, and G.S. Nolas, Phys. Rev. B 79, 115311 (2009).

    Article  Google Scholar 

  27. S.V. Faleev and F. Leonard, Phys. Rev. B 77, 214304 (2008).

    Article  Google Scholar 

  28. A. Popescu, L.M. Woods, J. Martin, and G.S. Nolas, Phys. Rev. B 79, 205302 (2009).

    Article  Google Scholar 

  29. M. Cutler and N.F. Mott, Phys. Rev. 181, 1336 (1969).

    Article  CAS  Google Scholar 

  30. H. Zou, D. Rowe, and S. Williams, Thin Solid Films 408, 270 (2002).

    Article  CAS  Google Scholar 

  31. L.W.D. Silva, M. Kaviany, and C. Uher, J. Appl. Phys. 97, 114903 (2005).

    Article  Google Scholar 

  32. Y.B. Zhu and W. Wang, Thin Solid Films 520, 2474 (2012).

    Article  CAS  Google Scholar 

  33. H.J. Lee, H.S. Park, S. Han, and J.Y. Kim, Thermochim. Acta. doi:10.1016/j.tca.2012.01.003.

  34. J.P. Carmo, M.F. Silva, J.F. Ribeiro, R.F. Wolffenbuttel, P. Alpuim, J.G. Rocha, L.M. Goncalves, and J.H. Correia, Microsyst. Technol. 17, 1283 (2011).

    Article  CAS  Google Scholar 

  35. S. Sumithra, N.J. Takas, D.K. Misra, W.M. Nolting, P.F.P. Poudeu, and K.L. Stokes, Adv. Energy Mater. 1, 1141 (2011).

    Article  CAS  Google Scholar 

  36. M. Scheele, N. Oeschler, I. Veremchuk, K.G. Reinsberg, A.M. Kreuziger, A. Kornowski, J. Broekaert, C. Klinke, and H. Weller, ACSNANO 4, 4283 (2010).

    CAS  Google Scholar 

  37. M. Takashiri, T. Shirakawa, K. Miyazaki, and H. Tsukamoto, Sens. Actuators A 138, 329 (2007).

    Article  Google Scholar 

  38. S.D. Kwon, B.K. Ju, S.J. Yoon, and J.S. Kim, J. Electron. Mater. 38, 920 (2009).

    Article  CAS  Google Scholar 

  39. W. Shin, T. Nakashima, M. Nishibori, N. Izu, T. Itoh, and I. Matsubara, Curr. Appl. Phys. 11, S36 (2011).

    Article  Google Scholar 

  40. C.T. Hsu, G.Y. Huang, H.S. Chu, B. Yu, and D.J. Yao, Appl. Energy 88, 1291 (2011).

    Article  Google Scholar 

  41. L.Wd. Silva and M. Kaviany, J. Microelectromech. Syst. 14, 1110 (2005).

    Article  Google Scholar 

  42. Y.L. Zhang, Y.F. Chen, C.M. Gong, J.K. Yang, R.M. Qian, and Y.J. Wang, J. Microelectromech. Syst. 16, 1113 (2007).

    Article  CAS  Google Scholar 

  43. W.P. Lin, D.E. Wesolowski, and C.C. Lee, J. Mater. Sci. Mater. Electron. 22, 1313 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, M., Deng, Y., Wang, Y. et al. Fabrication of Highly (0 0 l)-Textured Sb2Te3 Film and Corresponding Thermoelectric Device with Enhanced Performance. J. Electron. Mater. 41, 3031–3038 (2012). https://doi.org/10.1007/s11664-012-2214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2214-3

Keywords

Navigation