Journal of Electronic Materials

, Volume 41, Issue 9, pp 2307–2312 | Cite as

Measurement of Thermal Conductivity Using Steady-State Isothermal Conditions and Validation by Comparison with Thermoelectric Device Performance

  • Patrick J. Taylor
  • Jay R. Maddux
  • Parvez N. Uppal
Article

Abstract

A new technique for measuring thermal conductivity with significantly improved accuracy is presented. By using the Peltier effect to counterbalance an imposed temperature difference, a completely isothermal, steady-state condition can be obtained across a sample. In this condition, extraneous parasitic heat flows that would otherwise cause error can be eliminated entirely. The technique is used to determine the thermal conductivity of p-type and n-type samples of (Bi,Sb)2(Te,Se)3 materials, and thermal conductivity values of 1.47 W/m K and 1.48 W/m K are obtained respectively. To validate this technique, those samples were assembled into a Peltier cooling device. The agreement between the Seebeck coefficient measured individually and from the assembled device were within 0.5%, and the corresponding thermal conductivity was consistent with the individual measurements with less than 2% error.

Keywords

Thermoelectric power generation thermal conductivity Seebeck coefficient 

References

  1. 1.
    H. Wang, S. Bai, H. Böttner, L. Chen, F. Harris, L. Kiss, H. Kleinke, J. Konig, J. Lo, A. Mayolet, W. Porter, J. Sharp, C. Smith, and T. Tritt, International Energy Agency Report: Transport Properties of Bulk Thermoelectrics. ORNL Report #32716 (2011), p. 15.Google Scholar
  2. 2.
    E.H. Putley, Proc. Phys. Soc. B 68, 35 (1955).CrossRefGoogle Scholar
  3. 3.
    T.C. Harman, J.H. Cahn, and M.J. Logan, J. Appl. Phys. 30, 1351 (1959).CrossRefGoogle Scholar
  4. 4.
    A.W. Penn, J. Sci. Instrum. 41, 626 (1964).CrossRefGoogle Scholar
  5. 5.
    A. Bowley, L. Cowles, G. Williams, and H.J. Goldsmid, J. Sci. Instrum. 38, 433 (1961).CrossRefGoogle Scholar
  6. 6.
    R.J. Buist, Proc. 11th International Conference on Thermoelectrics, (1992).Google Scholar
  7. 7.
    P.J. Taylor, W.A. Jesser, F.D. Rosi, and Z. Derzko, Semiconduc. Sci. Technol. 12, 443 (1997).CrossRefGoogle Scholar
  8. 8.
    P.J. Taylor, J.R. Maddux, W.A. Jesser, and F.D. Rosi, J. Appl. Phys. 85, 7807 (1999).CrossRefGoogle Scholar
  9. 9.
    H.J. Goldsmid, Proc. Phys. Soc. B69, 203 (1956).Google Scholar
  10. 10.
    P.J. Taylor, T.C. Harman, N.K. Dhar, P.S. Wijewarnasuriya, J.C. Fraser, and M.Z. Tidrow, Appl. Phys. Lett. 85, 5415 (2004).CrossRefGoogle Scholar
  11. 11.
    S. Iwanaga, E. Toberer, A. LaLonde, and G. Snyder, Rev. Sci. Instrum. 82, 063905 (2011).CrossRefGoogle Scholar

Copyright information

© TMS (outside the USA) 2012

Authors and Affiliations

  • Patrick J. Taylor
    • 1
  • Jay R. Maddux
    • 1
  • Parvez N. Uppal
    • 1
  1. 1.Sensors and Electron Devices DirectorateUS Army Research LaboratoryAdelphiUSA

Personalised recommendations