Skip to main content
Log in

MOCVD Growth of Erbium Monoantimonide Thin Film and Nanocomposites for Thermoelectrics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We report the growth of erbium monoantimonide (ErSb) thin films on indium antimonide (100) substrates by low-pressure metalorganic chemical vapor deposition. The growth rate of ErSb thin films shows strong dependency on the growth temperature and the Sb/Er precursor molar flow rate ratio. Scanning electron microscopy, energy-dispersive x-ray spectroscopy, and x-ray diffractometry (XRD) were employed to study the ErSb thin films grown under the growth conditions that gave the maximum growth rate in the range we investigated. We also report the growth of two types of nanocomposites in which ErSb nanocolumns or nanoslabs with lengths ~500 nm and diameters 20 nm to 30 nm are embedded in Zn-doped InGaSb (ErSb/InGaSb:Zn) and ErSb nanoparticles with diameters of ~30 nm are embedded in Zn-doped InSbAs (ErSb/InSbAs:Zn). These nanocomposites were intended to increase phonon scattering in a mid-to-long phonon wavelength range to reduce lattice thermal conductivity. We used time-domain thermoreflectance to measure total thermal conductivity for the two types of nanocomposites, obtaining 4.0 ± 0.6 W/mK and 6.7 ± 0.8 W/mK for the ErSb/InAsSb:Zn and ErSb/InGaSb:Zn nanocomposites, respectively, which suggests that the thermal conductivity was close to or slightly smaller than the alloy limit of the two ternary alloy hosts. The two nanocomposites were further studied by transmission electron microscopy (TEM) to reveal their microscopic features and by XRD to assess their crystalline structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Terasaki, Y. Sasago, and K. Uchinokura. (1997) doi:10.1103/PhysRevB.56.R12685

  2. G. Chen, T. Caillat, M.S. Dresselhaus, G. Dresselhaus, and J.P. Fleurial (2003) doi:10.1179/095066003225010182.

  3. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis (2010) doi:10.1002/adma.201000839.

  4. J. Lee, J. Wu, and J.C. Grossman (2010) doi:10.1103/PhysRevLett.104.016602

  5. G. Mahan, S. Brian, and J. Sharp (1997) doi:10.1063/1.881752.

  6. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn (2001) doi:10.1038/35098012.

  7. J. Walachová, R. Zeipl, J. Zelinka, and V. Malina (2005) doi:10.1063/1.2001755.

  8. J.M. Zide, D.O. Klenov, S. Stemmer, A.C. Gossard, G. Zeng, J.E. Bowers, D. Vashaee, and A. Shakouri (2005) doi:10.1063/1.2043241.

  9. H. Lu, P.G. Burke, A.C. Gossard, G. Zeng, A. T. Ramu, J.-H. Bahk, and J.E. Bowers (2011) doi:10.1002/adma.201100449.

  10. W. Kim, J.M.O. Zide, A.C. Gossard, D.O. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar (2006) doi:10.1103/PhysRevLett.96.045901.

  11. W. Kim, S.L. Singer, A. Majumdar, J.M.O. Zide, D. Klenov, A.C. Gossard, and S. Stemmer (2008) doi:10.1021/nl080189t.

  12. W. Kim and A. Majumdar (2006) doi:10.1063/1.2188251.

  13. D.G. Cahill, K. Goodson, and A. Majumdar (2002) doi:10.1115/1.1454111.

  14. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot (2003) doi:10.1063/1.1524305.

  15. D.C. Driscoll, M. Hanson, C. Kadow, and A.C. Gossard (2001) doi:10.1063/1.1355988.

  16. A. Guivarch, Y. Ballini, Y. Toudic, M. Minier, P. Auvray, B. Guenais, J. Caulet, B. Le Merdy, B. Lambert, and A. Regreny (1994) doi:10.1063/1.356181.

  17. M.P. Hanson, D.C. Driscoll, C. Kadow, and A.C. Gossard (2004) doi:10.1063/1.1639932.

  18. C.J. Palmstrom, Annu. Rev. Mater. Sci. 25, 389 (1995).

    Article  Google Scholar 

  19. B.E. Warren, X-ray Diffraction (New York: Dover, 1969), pp. 29–41.

    Google Scholar 

  20. D.T. Cromer and J.B. Mann (1968) doi:10.1107/S0567739468000550.

  21. K. Hiramatsu, S. Itoh, H. Amano, I. Akasaki, N. Kuwano, T. Shiraishi, and K. Oki, Growth mechanism of GaN growth on sapphire with AlN buffer layer by MOCVD. J. Cryst. Growth 115, 628 (1991).

    Google Scholar 

  22. T.E. Buehl, C.J. Palmstrøm, and A.C. Gossard (2011) doi:10.1116/1.3549888.

  23. Y.K. Koh, S.L. Singer, W. Kim, J.M.O. Zide, H. Lu, D.G. Cahill, A. Majumdar, and A.C. Gossard (2009) doi:10.1063/1.3078808.

  24. S. Adachi (2007) doi:10.1063/1.2779259.

  25. J. Feser, Scalable Routes to Efficient Thermoelectric Materials, Ph.D., University of California, Berkeley, April 2011, 110 p; AAT 3444631.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate J. Norris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Norris, K.J., Lohn, A.J., Onishi, T. et al. MOCVD Growth of Erbium Monoantimonide Thin Film and Nanocomposites for Thermoelectrics. J. Electron. Mater. 41, 971–976 (2012). https://doi.org/10.1007/s11664-012-2094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2094-6

Keywords

Navigation