Journal of Electronic Materials

, Volume 41, Issue 8, pp 2029–2034 | Cite as

Internal Microstructure Investigation of Tin Whisker Growth Using FIB Technology

Article

Abstract

The problem of tin (Sn) whiskers has been a significant reliability issue in electronics for the past several decades. Despite the large amount of research conducted on this issue, a solution for mitigating the growth of whiskers remains a challenge for the research community. Whiskers have unpredictable growth and morphology, and a study of a whisker’s internal structure may provide further insights into the reason behind their complex growth. This study reports on the internal microstructure and morphology of complex-shaped Sn whiskers grown from an electroplated bright Sn layer on brass substrates exposed to ambient and 95% humid environment. The variables analyzed include surface and microstructure conditions of the film, and morphology and internal microstructure of the Sn whiskers using scanning electron microscopy with focused ion beam technology. Experimental results demonstrated that the whiskers with more complex morphology grow primarily from surfaces exposed to a controlled environment, and some of them have traits of polycrystalline growth rather than only single crystalline, as usually known.

Keywords

Sn whisker microstructure polycrystalline morphology scanning electron microscopy (SEM) focused ion beam (FIB) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.W. Price, Electrochemical Publications Limited, Ayr Scotland, 1983.Google Scholar
  2. 2.
    A.C. Tan, Chapman and Hall London, UK, 1993.Google Scholar
  3. 3.
    B.D. Dunn, Circuit World 2, 32 (1976).CrossRefGoogle Scholar
  4. 4.
    T.G. Galyon, IEEE Trans. Electron. Packag. Manuf., 28. January 2005.Google Scholar
  5. 5.
    G.T.T. Sheng and C.F. Hu, J. Appl. Phys. 92, 64 (2002).CrossRefGoogle Scholar
  6. 6.
    J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, and F.A. Baiocchi, J. Mater. Sci.: Mater. Electron. 18, 283 (2007).CrossRefGoogle Scholar
  7. 7.
    K. Zeng and K.N. Tu, Mater. Sci. Eng., R 38, 55 (2002).CrossRefGoogle Scholar
  8. 8.
    Tin (and Other Metal) Whisker Induced Failures, NASA Goddard Space Flight Center. http://nepp.nasa.gov/whisker/failures/index.htm. Accessed January 2012
  9. 9.
    S.E. Koonce and S.M. Arnold, J. Appl. Phys. (Letters to the Editor) 25, 134 (1954).Google Scholar
  10. 10.
    E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, April 2008.Google Scholar
  11. 11.
    K.N. Tu, Acta Metall. 21, 347 (1973).CrossRefGoogle Scholar
  12. 12.
    B.Z. Lee and D.N. Lee, Acta Metall. 46, 3701 (1998).Google Scholar
  13. 13.
    H.L. Reynolds and R. Hilty, IPC/JEDEC Lead (Pb) Free Conference, Boston, MA, Dec. 3, 2004.Google Scholar
  14. 14.
    C. Xu, C. Fan, A. Vysotskova, J. Abys, Y. Zhang, L. Hopkins, and F. Stevie, Proc. of the 2001 AESF SUR/FIN Conf., June 2001.Google Scholar
  15. 15.
    I. Baudry and G. Kerros, Soldering and Assembly Tech, vol. 3 (2001)Google Scholar
  16. 16.
    J.D. Eshelby, Phys. Rev. 91, 755 (1953).CrossRefGoogle Scholar
  17. 17.
    F.C. Frank, Philos. Mag. 44, 854 (1953).Google Scholar
  18. 18.
    S. Amelinckx, W. Bontinck, W. Dekeyser, and F. Seitz, Philos. Mag. 2, 355 (1957).CrossRefGoogle Scholar
  19. 19.
    W.C. Ellis, D.F. Gibbons, and R.C. Treuting, Growth and Perfection of Crystals, ed. R.H. Doremus, B.W. Roberts, and D. Turnbull (New York: Wiley, 1985), pp. 102–120.Google Scholar
  20. 20.
    I. Boguslavsky and P. Bush, Proceedings of the 2003 APEX Conference, Anaheim, CA, March 2003 unpublished, pp. S12-4-1-S12-4-10Google Scholar
  21. 21.
    P. Vianco and J. Rejent, J. Electron. Mater. 38, 1815 (2009).CrossRefGoogle Scholar
  22. 22.
    K.N. Tu, Phys. Rev. B 49, 2030 (1994).CrossRefGoogle Scholar
  23. 23.
    K.N. Tu and J.C.M. Li, Mater. Sci. Eng., A 409, 131 (2005).CrossRefGoogle Scholar
  24. 24.
    M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hugel, and A. Seekamp, Appl. Phys. Lett. 93, 011906-1-011906-3, July 2008.Google Scholar
  25. 25.
    W.C. Ellis, D.F. Gibbons, and R.C. Treuting, Growth and Perfection of Crystals, ed. R.H. Doremus, B.W. Roberts, and D. Turnbull (New York: John Wiley &Sons, 1958), pp. 102–120.Google Scholar
  26. 26.
    K.N. Tu, C. Chen, and A.T. Wu, J. Mater. Sci.: Mater. Electron. 18, 269 (2007).CrossRefGoogle Scholar
  27. 27.
    Research activities in Prof. Eric Chason’s Laboratory, Brown University, Providence, RI. http://www.engin.brown.edu/faculty/chason/research/. Accessed January 2012
  28. 28.
    N. Jadhav, E. Buchovecky, E. Chason, and A. Bower, J. Mater. July 2010.Google Scholar
  29. 29.
    S.E. Koonce and S.M. Arnold, J. Appl. Phys. 24, 365 (1953).CrossRefGoogle Scholar
  30. 30.
    A. Dimitrovska and R. Kovacevic, IEEE Trans. Electron. Packag. Manuf. 33, 193, 2010.Google Scholar
  31. 31.
    J. Cheng, S. Chen, P. Vianco, and J. C.M. Li, Electronic Components and Technology Conference (2008), pp. 472–477.Google Scholar
  32. 32.
    J. Cheng, P. Vianco, and J.C.M. Li, Appl. Phys. Lett. 96, 184102 (2010).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.College of EngineeringUniversity of North TexasDentonUSA
  2. 2.School of Engineering, Research Center for Advanced ManufacturingSouthern Methodist UniversityDallasUSA

Personalised recommendations