Skip to main content
Log in

Internal Microstructure Investigation of Tin Whisker Growth Using FIB Technology

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The problem of tin (Sn) whiskers has been a significant reliability issue in electronics for the past several decades. Despite the large amount of research conducted on this issue, a solution for mitigating the growth of whiskers remains a challenge for the research community. Whiskers have unpredictable growth and morphology, and a study of a whisker’s internal structure may provide further insights into the reason behind their complex growth. This study reports on the internal microstructure and morphology of complex-shaped Sn whiskers grown from an electroplated bright Sn layer on brass substrates exposed to ambient and 95% humid environment. The variables analyzed include surface and microstructure conditions of the film, and morphology and internal microstructure of the Sn whiskers using scanning electron microscopy with focused ion beam technology. Experimental results demonstrated that the whiskers with more complex morphology grow primarily from surfaces exposed to a controlled environment, and some of them have traits of polycrystalline growth rather than only single crystalline, as usually known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Price, Electrochemical Publications Limited, Ayr Scotland, 1983.

  2. A.C. Tan, Chapman and Hall London, UK, 1993.

  3. B.D. Dunn, Circuit World 2, 32 (1976).

    Article  Google Scholar 

  4. T.G. Galyon, IEEE Trans. Electron. Packag. Manuf., 28. January 2005.

  5. G.T.T. Sheng and C.F. Hu, J. Appl. Phys. 92, 64 (2002).

    Article  CAS  Google Scholar 

  6. J.W. Osenbach, J.M. DeLucca, B.D. Potteiger, A. Amin, and F.A. Baiocchi, J. Mater. Sci.: Mater. Electron. 18, 283 (2007).

    Article  CAS  Google Scholar 

  7. K. Zeng and K.N. Tu, Mater. Sci. Eng., R 38, 55 (2002).

    Article  Google Scholar 

  8. Tin (and Other Metal) Whisker Induced Failures, NASA Goddard Space Flight Center. http://nepp.nasa.gov/whisker/failures/index.htm. Accessed January 2012

  9. S.E. Koonce and S.M. Arnold, J. Appl. Phys. (Letters to the Editor) 25, 134 (1954).

    CAS  Google Scholar 

  10. E. Chason, N. Jadhav, W.L. Chan, L. Reinbold, and K.S. Kumar, Appl. Phys. Lett. 92, April 2008.

  11. K.N. Tu, Acta Metall. 21, 347 (1973).

    Article  CAS  Google Scholar 

  12. B.Z. Lee and D.N. Lee, Acta Metall. 46, 3701 (1998).

    CAS  Google Scholar 

  13. H.L. Reynolds and R. Hilty, IPC/JEDEC Lead (Pb) Free Conference, Boston, MA, Dec. 3, 2004.

  14. C. Xu, C. Fan, A. Vysotskova, J. Abys, Y. Zhang, L. Hopkins, and F. Stevie, Proc. of the 2001 AESF SUR/FIN Conf., June 2001.

  15. I. Baudry and G. Kerros, Soldering and Assembly Tech, vol. 3 (2001)

  16. J.D. Eshelby, Phys. Rev. 91, 755 (1953).

    Article  Google Scholar 

  17. F.C. Frank, Philos. Mag. 44, 854 (1953).

    CAS  Google Scholar 

  18. S. Amelinckx, W. Bontinck, W. Dekeyser, and F. Seitz, Philos. Mag. 2, 355 (1957).

    Article  CAS  Google Scholar 

  19. W.C. Ellis, D.F. Gibbons, and R.C. Treuting, Growth and Perfection of Crystals, ed. R.H. Doremus, B.W. Roberts, and D. Turnbull (New York: Wiley, 1985), pp. 102–120.

  20. I. Boguslavsky and P. Bush, Proceedings of the 2003 APEX Conference, Anaheim, CA, March 2003 unpublished, pp. S12-4-1-S12-4-10

  21. P. Vianco and J. Rejent, J. Electron. Mater. 38, 1815 (2009).

    Article  CAS  Google Scholar 

  22. K.N. Tu, Phys. Rev. B 49, 2030 (1994).

    Article  CAS  Google Scholar 

  23. K.N. Tu and J.C.M. Li, Mater. Sci. Eng., A 409, 131 (2005).

    Article  Google Scholar 

  24. M. Sobiech, U. Welzel, E.J. Mittemeijer, W. Hugel, and A. Seekamp, Appl. Phys. Lett. 93, 011906-1-011906-3, July 2008.

  25. W.C. Ellis, D.F. Gibbons, and R.C. Treuting, Growth and Perfection of Crystals, ed. R.H. Doremus, B.W. Roberts, and D. Turnbull (New York: John Wiley &Sons, 1958), pp. 102–120.

  26. K.N. Tu, C. Chen, and A.T. Wu, J. Mater. Sci.: Mater. Electron. 18, 269 (2007).

    Article  CAS  Google Scholar 

  27. Research activities in Prof. Eric Chason’s Laboratory, Brown University, Providence, RI. http://www.engin.brown.edu/faculty/chason/research/. Accessed January 2012

  28. N. Jadhav, E. Buchovecky, E. Chason, and A. Bower, J. Mater. July 2010.

  29. S.E. Koonce and S.M. Arnold, J. Appl. Phys. 24, 365 (1953).

    Article  CAS  Google Scholar 

  30. A. Dimitrovska and R. Kovacevic, IEEE Trans. Electron. Packag. Manuf. 33, 193, 2010.

  31. J. Cheng, S. Chen, P. Vianco, and J. C.M. Li, Electronic Components and Technology Conference (2008), pp. 472–477.

  32. J. Cheng, P. Vianco, and J.C.M. Li, Appl. Phys. Lett. 96, 184102 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Fortier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortier, A., Kovacevic, R. Internal Microstructure Investigation of Tin Whisker Growth Using FIB Technology. J. Electron. Mater. 41, 2029–2034 (2012). https://doi.org/10.1007/s11664-012-2065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2065-y

Keywords

Navigation