Embedded Capacitors in Printed Wiring Board: A Technological Review

Abstract

This paper reviews the technology of embedded capacitors, which has gained importance with an increase in the operating frequency and a decrease in the supply voltage of electronic circuits. These capacitors have been found to reduce the number of surface-mount capacitors, which can assist in the miniaturization of printed wiring boards. This paper describes various aspects of embedded capacitors, such as electrical performance, available dielectric materials, manufacturing processes, and reliability. Improvement in electrical performance is explained using a cavity model from the theory of microstrip antennas. The advantages and disadvantages of dielectric materials such as polymers, ceramics, polymer–ceramic composites, and polymer–conductive filler composites are discussed. Various manufacturing techniques that can be used for the fabrication of embedded capacitors are also discussed. Embedded capacitors have many advantages, but failure of an embedded capacitor can lead to board failure since these capacitors are not reworkable. The effect of various environmental stress conditions on the reliability of embedded capacitors is reviewed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Y. Rao, J. Yue, and C. Wong, J. Appl. Polym. Sci. 92, 2228 (2004).

    Article  CAS  Google Scholar 

  2. 2.

    J. Rector, J. Dougherty, V. Brown, J. Galvagni, and J. Prymak, Electronic Components and Technology Conference (San Jose, CA, 1997), pp. 713–723.

  3. 3.

    J. Rector, Electronic Components and Technology Conference (Seattle, WA, 1999), pp. 218–224.

  4. 4.

    S. Bhattacharya and R. Tummala, Microelectron. J. 32, 11 (2001).

    Article  CAS  Google Scholar 

  5. 5.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, Circuit World 36, 22 (2010).

    Article  Google Scholar 

  6. 6.

    A. Madou and L. Martens, IEEE Trans. Electromagn. Compat. 43, 549 (2001).

    Article  Google Scholar 

  7. 7.

    J. Peiffer, IPC Printed Circuits Expo (Los Angeles, CA, 2007).

  8. 8.

    P. Muthana, A. Engin, M. Swaminathan, R. Tummala, V. Sundaram, B. Wiedenman, D. Amey, K. Dietz, and S. Banerji, IEEE Trans. Adv. Packag. 30, 809 (2007).

    Article  Google Scholar 

  9. 9.

    G. Lei, R. Techentin, and B. Gilbert, IEEE Trans. Microw. Theory Tech. 47, 562 (1999).

    Article  Google Scholar 

  10. 10.

    R. Ulrich and L. Schaper, Integrated Passive Component Technology (New York: Wiley/IEEE, 2003).

    Book  Google Scholar 

  11. 11.

    J. Peiffer, Print. Circ. Des. Manuf. 32 (2004).

  12. 12.

    J. Savic, R. Croswell, A. Tungare, G. Dunn, T. Tang, R. Lempkowski, M. Zhang, and T. Lee, IPC Printed Circuits Expo (Long Beach, CA, 2002).

  13. 13.

    T. Kamgaing, K. Ichikawa, X. Zeng, K. Hwang, Y. Min, and J. Kubota, Intel Technol. J. 9, 353 (2005).

    Google Scholar 

  14. 14.

    C. Weng, P. Wei, C. Wu, C. Chen, U. Jow, and Y. Lai, Electronic Components and Technology Conference (Las Vegas, NV, 2004), pp. 1124–1128.

  15. 15.

    W. Jillek and W. Yung, Int. J. Adv. Manuf. Technol. 25, 350 (2005).

    Article  Google Scholar 

  16. 16.

    C. Huang, International Symposium on Antennas and Propagation (Seoul, Korea, 2005), pp. 397–400.

  17. 17.

    B. Archambeault, O. Ramahi, and C. Brench, EMI/EMC Computational Modeling Handbook (Massachusetts: Kluwer Academic, 2001).

    Book  Google Scholar 

  18. 18.

    O. Ramahi, V. Subramanian, and B. Archambeault, IEEE Trans. Adv. Packag. 26, 191 (2003).

    Article  Google Scholar 

  19. 19.

    Y. Lo, D. Solomon, and W. Richards, IEEE Trans. Antennas Propag. 27, 137 (1979).

    Article  Google Scholar 

  20. 20.

    I. Novak, Electrical Performance of Electronic Packaging (1999), p. 153.

  21. 21.

    N. Na, J. Choi, S. Chun, and M. Swaminathan, IEEE Trans. Adv. Packag. 23, 340 (2000).

    Article  Google Scholar 

  22. 22.

    R. Ulrich, Circuit World 30, 20 (2004).

    Article  Google Scholar 

  23. 23.

    T. Takken and D. Tckerman, Electronic Components and Technology Conference (Santa Cruz, CA, 1993), pp. 79–84.

  24. 24.

    Z. Nami, O. Misman, A. Erbil, and G. May, J. Cryst. Growth 179, 522 (1997).

    Article  CAS  Google Scholar 

  25. 25.

    S. Bhattacharya and R. Tummala, J. Mater. Sci.: Mater. Electron. 11, 253 (2000).

    Article  CAS  Google Scholar 

  26. 26.

    P. Jain and E. Rymaszewski, IEEE Trans. Adv. Packag. 25, 454 (2002).

    Article  CAS  Google Scholar 

  27. 27.

    H. Nalwa, Handbook of Low and High Dielectric Constant Materials and Their Applications (New York: Academic, 1999).

    Google Scholar 

  28. 28.

    S. Bhattacharya and R. Tummala, J. Electron. Packag. 124, 1 (2002).

    Article  CAS  Google Scholar 

  29. 29.

    S. Tasaka, Ferroelectric Polymers, ed. H. Singh (New York: Marcel Dekker, 1995).

  30. 30.

    H. Pohl, IEEE Trans. Electr. Insul. EI-21, 683 (1986).

    Article  CAS  Google Scholar 

  31. 31.

    C. Kittel, Introduction to Solid State Physics (New York: Wiley, 2007).

    Google Scholar 

  32. 32.

    R. Ulrich, L. Schaper, D. Nelms, and M. Leftwich, Int. J. Microcircuits Electron. Packag. 23, 172 (2000).

    CAS  Google Scholar 

  33. 33.

    W. Liu, S. Cochrane, S. Lakshmikumar, D. Knorr, E. Rymaszewski, J. Borrego, and T. Lu, IEEE Electron Dev. Lett. 14, 320 (1993).

    Article  CAS  Google Scholar 

  34. 34.

    J. Marian, K. Cheek, S. Streiffer, S. Kim, G. Dunn, and A. Kingon, US–Japan Seminar on Dielectric and Piezoelectric Ceramics (Osaka, Japan, 1999).

  35. 35.

    D. Yoon, J. Zhang, and B. Lee, Mater. Res. Bull. 38, 765 (2003).

    Article  CAS  Google Scholar 

  36. 36.

    K. Jang and K. Paik, J. Appl. Polym. Sci. 110, 798 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    Y. Rao, J. Qu, T. Marinis, and C. Wong, IEEE Trans. Compon. Packag. Technol. 23, 680 (2000).

    Article  CAS  Google Scholar 

  38. 38.

    J. Xu, S. Bhattacharya, K. Moon, J. Lu, B. Englert, and C. Wong, Electronic Components and Technology Conference (San Diego, CA, 2006), pp. 1520–1532.

  39. 39.

    N. Jayasundere and B. Smith, J. Appl. Phys. 73, 2462 (1993).

    Article  Google Scholar 

  40. 40.

    M. Takeuchi, International Conference on Properties and Applications of Dielectric Materials (Tokyo, Japan, 1991), pp. 1064–1067.

  41. 41.

    S. Swartz, IEEE Trans. Electr. Insul. 25, 935 (1990).

    Article  CAS  Google Scholar 

  42. 42.

    S. Wada, T. Hoshina, H. Yasuno, M. Nam, H. Kakemoto, T. Tsurumi, and M. Yashima, J. Korean Phys. Soc. 46, 303 (2005).

    CAS  Google Scholar 

  43. 43.

    M. Leonard and A. Safari, International Symposium on Applications of Ferroelectrics (East Brunswick, NJ, 1996), pp. 1003–1005.

  44. 44.

    K. Paik, J. Hyun, S. Lee, and K. Jang, Electronic System-Integration Technology Conference (Dresden, Germany, 2006), pp. 794–801.

  45. 45.

    K. Paik, S. Cho, J. Lee, and J. Hyun, International Conference on Electronic Materials and Packaging (Kaohsiung, Taiwan, 2002), pp. 341–347.

  46. 46.

    J. Xu, K. Moon, P. Pramanik, S. Bhattacharya, and C. Wong, IEEE Trans. Compon. Packag. Technol. 30, 248 (2007).

    Article  CAS  Google Scholar 

  47. 47.

    R. Popielarz, C. Chiang, R. Nozaki, and J. Obruzt, Macromolecules 34, 5910 (2001).

    Article  CAS  Google Scholar 

  48. 48.

    S. Lee, J. Hyun, H. Park, J. Kim, and K. Paik, Electronic Components and Technology Conference (Lake Buena Vista, FL, 2005), pp. 1222–1227.

  49. 49.

    S. Lee, J. Hyun, H. Kim, and K. Paik, IEEE Trans. Adv. Packag. 30, 428 (2007).

    Article  CAS  Google Scholar 

  50. 50.

    Y. Rao, J. Yue, and C. Wong, Electronic Components and Technology Conference (Orlando, FL, 2001), pp. 1408–1412.

  51. 51.

    K. Paik, S. Cho, and J. Hyun, IEEE International Conference on Asian Green Electronics (2004), pp. 68–73.

  52. 52.

    S. Cho, J. Lee, and K. Paik, Electronic Components and Technology Conference (San Diego, CA, 2002), pp. 504–509.

  53. 53.

    A. Poslinski, M. Ryan, R. Gupta, S. Seshadri, and F. Frechette, J. Rheol. 32, 751 (1988).

    Article  CAS  Google Scholar 

  54. 54.

    H. Windlass, P. Raj, D. Balaraman, S. Bhattacharya, and R. Tummala, IEEE Trans. Electron. Packag. Manuf. 26, 100 (2003).

    Article  CAS  Google Scholar 

  55. 55.

    S. Cho and K. Paik, Electronic Components and Technology Conference (Orlando, FL, 2001), pp. 1418–1422.

  56. 56.

    S. Ogitani, S. Allen, and P. Kohl, IEEE Trans. Adv. Packag. 23, 313 (2000).

    Article  CAS  Google Scholar 

  57. 57.

    J. Xu, S. Bhattacharya, P. Pramanik, and C. Wong, J. Electron. Mater. 35, 2009 (2006).

    Article  CAS  Google Scholar 

  58. 58.

    S. Cho, J. Lee, and K. Paik, International Conference on Electronic Materials and Packaging (Jeju Island, 2001), pp. 63–68.

  59. 59.

    Y. Sun, Z. Zhang, K. Moon, and C. Wong, J. Polym. Sci. B: Polym. Phys. 42, 3849 (2004).

    Article  CAS  Google Scholar 

  60. 60.

    Y. Ohara, M. Miyayama, T. Shimizu, and Y. Yanigida, J. Mater. Sci.: Mater. Electron. 7, 27 (1996).

    Article  CAS  Google Scholar 

  61. 61.

    Y. Ohara, K. Koumoto, and H. Yanagida, J. Am. Ceram. Soc. 77, 2327 (1994).

    Article  CAS  Google Scholar 

  62. 62.

    V. Agrawal, P. Chahal, R. Tummala, and M. Allen, Electronic Components and Technology Conference (Seattle, WA, 1998), pp. 165–170.

  63. 63.

    L. Fan, Y. Rao, C. Tison, K. Moon, S. Pothukuchi, and C. Wong, Electronic Components and Technology Conference (San Diego, CA, 2002), pp. 936–940.

  64. 64.

    L. Fan, Y. Rao, C. Tison, K. Moon, S. Pothukuchi, and C. Wong, International Symposium on Advanced Packaging Materials (Stone Mountain, GA, 2002), pp. 120–126.

  65. 65.

    L. Chu, K. Prakash, M. Tsai, and I. Lin, J. Eur. Ceram. Soc. 28, 1205 (2008).

    Article  CAS  Google Scholar 

  66. 66.

    U. Paik, V. Hackley, S. Choi, and Y. Jung, Colloids Surf. A: Physicochem. Eng. Asp. 135, 77 (1998).

    Article  CAS  Google Scholar 

  67. 67.

    Y. Rao, A. Takahashi, and C. Wong, International Symposium on Advanced Packaging Materials (Stone Mountain, GA, 2002), pp. 188–193.

  68. 68.

    Y. Rao, A. Takahashi, and C. Wong, Composites A 34, 1113 (2003).

    Article  Google Scholar 

  69. 69.

    T. Sata and R. Ruch, Stabilization of Colloidal Dispersion by Polymer Adsorption (New York: Dekker, 1984).

    Google Scholar 

  70. 70.

    Y. Rao, C. Wong, and J. Xu, U.S. Patent No. 6864306 (2005).

  71. 71.

    C. Pecharroman and J. Moya, Adv. Mater. 12, 1777 (2000).

    Article  Google Scholar 

  72. 72.

    D. Grannan, J. Garland, and D. Tanner, Phys. Rev. Lett. 46, 375 (1981).

    Article  CAS  Google Scholar 

  73. 73.

    J. Lu and C. Wong, IEEE Trans. Dielectr. Electr. Insul. 15, 1322 (2008).

    Article  CAS  Google Scholar 

  74. 74.

    Y. Rao and C. Wong, Electronic Components and Technology Conference (San Diego, CA, 2002), pp. 920–923.

  75. 75.

    L. Li, A. Takahashi, J. Hao, R. Kikuchi, T. Hayakawa, T. Tsurumi, and M. Kakimoto, IEEE Trans. Compon. Packag. Technol. 28, 754 (2005).

    Article  CAS  Google Scholar 

  76. 76.

    J. Xu and C. Wong, Electronic Components and Technology Conference (Lake Buena Vista, FL, 2005), pp. 1864–1869.

  77. 77.

    J. Xu, M. Wong, and C. Wong, Electronic Components and Technology Conference (Las Vegas, NV, 2004), pp. 536–541.

  78. 78.

    J. Lu, K. Moon, J. Xu, and C. Wong, International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces (Irvine, CA, 2005), pp. 237–242.

  79. 79.

    Q. Feng, Z. Dang, N. Ni, and X. Cao, Mater. Sci. Eng. B 99, 325 (2003).

    Article  Google Scholar 

  80. 80.

    Y. Rao and C. Wong, International Symposium on Advanced Packaging Materials (Stone Mountain, GA, 2002), pp. 243–248.

  81. 81.

    Y. Shen, Y. Lin, M. Li, and C. Nan, Adv. Mater. 19, 1418 (2007).

    Article  CAS  Google Scholar 

  82. 82.

    J. Xu, K. Moon, C. Tison, and C. Wong, IEEE Trans. Adv. Packag. 29, 295 (2006).

    Article  CAS  Google Scholar 

  83. 83.

    T. Campbell, R. Kalia, A. Nakano, P. Vashishta, S. Ogata, and S. Rodgers, Phys. Rev. Lett. 82, 24 (1999).

    Google Scholar 

  84. 84.

    C. Chen, S. Yu, R. Sun, S. Luo, L. Weng, and R. Du, International Conference on Electronic Packaging Technology and High Density Packaging (Beijing, China, 2009), pp. 589–559.

  85. 85.

    J. Xu and C. Wong, Electronic Packaging Technology Conference (Singapore, 2003), pp. 544–550.

  86. 86.

    J. Xu and C. Wong, International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces (Atlanta, GA, 2004), pp. 158–170.

  87. 87.

    S. Ang and W. Brown, International Conference on Properties and Applications of Dielectric Materials (Xi’an, China, 2000), pp. 841–844.

  88. 88.

    K. Kitaoka, H. Kozuka, T. Hasimoto, and T. Yoko, J. Mater. Sci. 32, 2063 (1997).

    Article  CAS  Google Scholar 

  89. 89.

    H. Shiomi, M. Sasaki, Y. Nakamura, and Y. Matsumura, J. Mater. Sci.: Mater. Electron. 8, 179 (1997).

    Article  CAS  Google Scholar 

  90. 90.

    J. Zhang, S. Luo, and L. Gui, J. Mater. Sci. 32, 1469 (1997).

    Article  CAS  Google Scholar 

  91. 91.

    K. Yao, W. Zhu, and X. Yao, IEEE Trans. Compon. Packag. Manuf. Technol. Part C 21, 20 (1998).

    Google Scholar 

  92. 92.

    J. Ahn, J. Lee, J. Kim, J. Yoo, and C. Ryu, International Conference on Electronic Packaging Technology (Shanghai, China, 2006), pp. 1–5.

  93. 93.

    D. Dimos, S. Lockwood, S. Schwartz, and M. Rodgers, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 18, 174 (1995).

    Article  CAS  Google Scholar 

  94. 94.

    Q. Zou, H. Ruda, and R. Sodhi, J. Mater. Sci.: Mater. Electron. 13, 601 (2002).

    Article  CAS  Google Scholar 

  95. 95.

    I. Abothu, P. Raj, H. Hwang, M. Kumar, and M. Iyer, Electronic Components and Technology Conference (Reno, NV, 2007), pp. 1014–1018.

  96. 96.

    I. Abothu, P. Raj, D. Balaraman, M. Sacks, S. Bhattacharya, and R. Tummala, International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces (Atlanta, GA, 2004), pp. 78–83.

  97. 97.

    J. Maria, K. Cheek, S. Streiffer, S. Kim, G. Dunn, and A. Kingon, J. Am. Ceram. Soc. 84, 2436 (2001).

    Article  CAS  Google Scholar 

  98. 98.

    V. Surganov, IEEE Trans. Compon. Packag. Manuf. Technol. Part B 17, 197 (1994).

    Article  CAS  Google Scholar 

  99. 99.

    D. Nelms, R. Ulrich, L. Schaper, and S. Reeder, Electronic Components and Technology Conference (Seattle, WA, 1998), pp. 247–251.

  100. 100.

    Y. Baba, H. Ochi, and S. Segawa, IEEE Trans. Compon. Packag. Manuf. Technol. Part A 18, 170 (1995).

    Article  CAS  Google Scholar 

  101. 101.

    K. Paik, J. Hyun, and K. Jang, IEEE Trans. Electron. Packag. Manuf. 28, 297 (2005).

    Article  Google Scholar 

  102. 102.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, ASME Conference on Smart Materials, Adaptative Structures and Intelligent Systems (Philadelphia, PA, 2010).

  103. 103.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, Machinery Failure Prevention Technology (Virginia Beach, VA, 2011).

  104. 104.

    R. Gerke and D. Ator, IEEE Aerospace Conference (Big Sky, MT, 2006).

  105. 105.

    M. Pecht, L. Nguyen, and E. Hakim, Plastic Encapsulated Microelectronics (New York: Wiley, 1994).

    Google Scholar 

  106. 106.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, J. Intell. Mater. Syst. Struct. 22, 1293 (2011).

    Article  Google Scholar 

  107. 107.

    W. Mason, J. Acoust. Soc. Am. 27, 73 (1955).

    Article  CAS  Google Scholar 

  108. 108.

    D. Donahoe, M. Pecht, I. Lloyd, and S. Ganesan, Microelectron. Reliab. 46, 400 (2006).

    Article  CAS  Google Scholar 

  109. 109.

    L. Mitoseriu, V. Tura, M. Curteanu, D. Popovici, and A. Anghel, IEEE Trans. Dielectr. Electr. Insul. 8, 500 (2001).

    Article  CAS  Google Scholar 

  110. 110.

    K. Jang and K. Paik, Electronic Components and Technology Conference (San Diego, CA, 2006), pp. 1504–1509.

  111. 111.

    S. Lee, J. Hyun, J. Pak, H. Lee, H. Jeon, and K. Paik, Electronic Components and Technology Conference (Lake Buena Vista, FL, 2008), pp. 742–746.

  112. 112.

    R. Das, J. Lauffer, and V. Markovich, J. Mater. Chem. 18, 537 (2008).

    Article  CAS  Google Scholar 

  113. 113.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, Capacitor and Resistor Technology Symposium (Jacksonville, FL, 2009).

  114. 114.

    K. Lee, S. Bhattacharya, M. Varadarajan, L. Wan, I. Abothu, V. Sundaram, P. Muthana, D. Balaraman, P. Raj, M. Swaminathan, S. Sitaram, R. Tummala, P. Viswanadham, S. Dunford, and J. Lauffer, International Symposium on Advanced Packaging Materials: Processes, Properties, and Interfaces (Irvine, CA, 2005), pp. 249–254.

  115. 115.

    R. Das, M. Poliks, J. Lauffer, and V. Markovich, Electronic Components and Technology Conference (San Diego, CA, 2006), pp. 1510–1515.

  116. 116.

    W. Qiu, K. Pan, C. Yuan, and J. Wang, International Conference on Electronic Packaging Technology and High Density Packaging (Beijing, China, 2009), pp. 123–127.

  117. 117.

    K. Lee, M. Damani, R. Pucha, S. Bhattacharya, R. Tummala, and S. Sitaraman, IEEE Trans. Compon. Packag. Technol. 30, 152 (2007).

    Article  CAS  Google Scholar 

  118. 118.

    M. Damani, R. Pucha, S. Bhattacharya, R. Tummala, and S. Sitaram, Electronic Components and Technology Conference (Las Vegas, NV, 2004), pp. 2027–2031.

  119. 119.

    D. Schatzel, International Electronic Packaging Technical Conference and Exhibition (Maui, Hawaii, 2003).

  120. 120.

    C. Zou, J. Fothergill, and S. Rowe, IEEE Trans. Dielectr. Electr. Insul. 15, 106 (2008).

    Article  CAS  Google Scholar 

  121. 121.

    C. Zou, J. Fothergill, and S. Rowe, International Conference on Solid Dielectrics (Winchester, UK, 2007), pp. 389–392.

  122. 122.

    M. Alam, M. Azarian, and M. Pecht, IEEE Trans. Device Mater. Reliab. (2011). doi:10.1109/TDMR.2011.2168527.

  123. 123.

    C. Park, B. Han, and H. Bair, Polymer 38, 3811 (1997).

    Article  CAS  Google Scholar 

  124. 124.

    S. Lee, J. Jang, W. Lee, and K. Paik, Electronic Components and Technology Conference (San Diego, CA, 2009), pp. 771–776.

  125. 125.

    H. Lee and L. Burton, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-9, 469 (1986).

    Article  CAS  Google Scholar 

  126. 126.

    B. Rawal and N. Chan, Conduction and Failure Mechanisms in Barium Titanate Based Ceramics under Highly Accelerated Conditions, AVX Technical Report, Myrtle Beach, SC.

  127. 127.

    J. Andresakis, T. Yamamoto, and N. Biunno, Circuit World 30, 36 (2003).

    Article  CAS  Google Scholar 

  128. 128.

    J. Yamamatsu, N. Kawano, T. Arashi, A. Sato, Y. Nakano, and T. Nomura, J. Power Sources 60, 199 (1996).

    Article  CAS  Google Scholar 

  129. 129.

    H. Kishi, Y. Mizuno, and H. Chazono, Jpn. J. Appl. Phys. 42, 1 (2003).

    Article  CAS  Google Scholar 

  130. 130.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, Microelectron. Reliab. 51, 946 (2011).

    Article  CAS  Google Scholar 

  131. 131.

    S. Simamoto, Y. Sakata, J. Kojima, N. Kume, and Y. Tsujimoto, IEEE International Symposium on Electrical Insulation (Baltimore, MD, 1992), pp. 140–143.

  132. 132.

    S. Alapati and M. Thomas, Int. J. Emerg. Electr. Power Syst. 10, 7 (2009).

    Google Scholar 

  133. 133.

    T. Imai, F. Sawa, T. Nakano, T. Ozaki, T. Shimizu, M. Kozako, and T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 13, 319 (2006).

    Article  CAS  Google Scholar 

  134. 134.

    R. Sarathi, R. Sahu, and P. Rajeshkumar, Mater. Sci. Eng. A 445–446, 567 (2007).

    Google Scholar 

  135. 135.

    J. Nelson and Y. Hu, J. Phys. D Appl. Phys. 38, 213 (2005).

    Article  CAS  Google Scholar 

  136. 136.

    T. Prokopowicz and A. Vaskas, Research and Development, Intrinsic Reliability, Subminiature Ceramic Capacitors, Final Report, ECOM-90705-F, 175 pp, NTIS AD-864068 (1969).

  137. 137.

    W. Minford, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-5, 297 (1982).

    Article  Google Scholar 

  138. 138.

    I. Yoo, L. Burton, and F. Stephenson, IEEE Trans. Compon. Hybrids Manuf. Technol. CHMT-10, 274 (1987).

    Article  CAS  Google Scholar 

  139. 139.

    J. Paulsen and E. Reed, Microelectron. Reliab. 42, 815 (2002).

    Article  Google Scholar 

  140. 140.

    G. Maher, T. Prokopowicz, and V. Bheemineni, Electronic Components and Technology Conference (Orlando, FL, 1993), pp. 280–284.

  141. 141.

    M. Randall, A. Gaurav, D. Skamser, and J. Beeson, Capacitor and Resistor Technology Symposium (Scottsdale, AZ, 2003).

  142. 142.

    S. Yang, J. Kim, D. Ryu, M. Kim, and J. Jang, Int. J. Mod. Phys. B 17, 1318 (2003).

    Article  Google Scholar 

  143. 143.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, IPC APEX EXPO (Las Vegas, NV, 2010).

  144. 144.

    M. Alam, M. Azarian, M. Osterman, and M. Pecht, IPC APEX EXPO (Las Vegas, NV, 2011).

  145. 145.

    P. Sandborn, B. Etienne, and G. Subramanian, IEEE Trans. Electron. Packag. Manuf. 24, 203 (2001).

    Article  Google Scholar 

  146. 146.

    P. Sandborn, B. Etienne, J. Herrmann, and M. Chincholkar, Circuit World 30, 25 (2003).

    Article  Google Scholar 

  147. 147.

    S. Bhattacharya, P. Raj, D. Balaraman, H. Windlass, and R. Tummala, Circuit World 30, 31 (2003).

    Article  CAS  Google Scholar 

  148. 148.

    A. Seki, Murata Manufacturing Co. Ltd. http://www.murata.com/products/article/pdf/ta10d1.pdf. Accessed 13 October 2011.

  149. 149.

    L. Bewley, US Patent No. 3,519,959 (1966).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael H. Azarian.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Alam, M.A., Azarian, M.H. & Pecht, M.G. Embedded Capacitors in Printed Wiring Board: A Technological Review. Journal of Elec Materi 41, 2286–2303 (2012). https://doi.org/10.1007/s11664-012-2044-3

Download citation

Keywords

  • Embedded capacitors
  • power–ground plane
  • impedance
  • paraelectric
  • ferroelectric
  • polymer–ceramic composites
  • polymer–conductive filler composites
  • dispersants
  • manufacturing
  • reliability