Skip to main content
Log in

Organic Thermoelectric Materials Composed of Conducting Polymers and Metal Nanoparticles

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Organic thermoelectric materials consisting of conducting polymers have received much attention recently because of their advantages such as wide availability of carbon, easy syntheses, easy processing, flexible devices, low cost, and low thermal conductivity. Nevertheless, their thermoelectric performance is still not good enough for practical use. To improve their performance, we present herein new kinds of hybrids of organic conducting polymers and metal nanoparticles (NPs). Since hybridization of polyaniline with poly-(N-vinyl-2-pyrrolidone) (PVP)-protected Au NPs decreased the electrical conductivity of polyaniline films from 150 S cm−1 to 50 S cm−1, we carried out direct hybridization of polyaniline with Au NPs without PVP in this study. Direct hybridization improved the electrical conductivity to as high as 330 S cm−1 at 50°C while keeping the Seebeck coefficient at 15 μV m−1 K−2. Poly(3,4-ethylenedioxythiophene) (PEDOT) is another promising conducting polymer. Here, we used hybrid films of PEDOT with Au NPs protected by two kinds of ligands, terthiophenethiol and dodecanethiol (DT), revealing that the hybrid of PEDOT with DT-protected Au NPs showed better thermoelectric performance than pristine PEDOT without Au NPs. Addition of DT-protected Au NPs improved the electrical conductivity of the PEDOT films from 104 S cm−1 to 241 S cm−1 and the thermoelectric figure of merit from 0.62 × 10−2 to 1.63 × 10−2 at 50°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. J. Roncali, Chem. Rev. 92, 711 (1992).

    Article  CAS  Google Scholar 

  2. P. Peumans, A. Yakimov, and S.R. Forrest, J. Appl. Phys. 93, 3693 (2003).

    Article  CAS  Google Scholar 

  3. H. Yan and N. Toshima, Chem. Lett. 1217 (1999).

  4. H. Yan, N. Ohno, and N. Toshima, Chem. Lett. 392 (2000).

  5. H. Yan, T. Ohta, and N. Toshima, Macromol. Mater. Eng. 286, 214 (2001).

    Article  Google Scholar 

  6. Y. Hiroshige, M. Ookawa, and N. Toshima, Synth. Met. 156, 1341 (2006).

    Article  CAS  Google Scholar 

  7. Y. Hirsoshige, M. Ookawa, and N. Toshima, Synth. Met. 157, 467 (2007).

    Article  Google Scholar 

  8. N. Toshima, M. Imai, and S. Ichikawa, J. Electron. Mater. 40, 898 (2011).

    Article  CAS  Google Scholar 

  9. Y. Shinohara, K. Ohara, Y. Imai, Y. Isoda, and H. Nakanishi, Int. Conf. Thermoelectr 22, 298 (2003).

    Google Scholar 

  10. Y. Shinohara, K. Hiraishi, H. Nakanishi, Y. Isoda, and Y. Imai, Trans. Mater. Res Soc. Jpn. 30, 963 (2005).

    CAS  Google Scholar 

  11. Y. Yuan, X. Liu, S. Desbief, P. Leclere, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin, and X. Crispin, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 115454 (2010).

    Article  Google Scholar 

  12. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, Nat. Mater. 10, 429 (2011).

    Article  CAS  Google Scholar 

  13. C. Janaky and C. Visy, Synth. Met. 158, 1009 (2008).

    Article  CAS  Google Scholar 

  14. Q. Yao, L. Chen, W. Zhang, S. Liufu, and X. Chen, ACS Nano 4, 2445 (2010).

    Article  CAS  Google Scholar 

  15. B. Zhang, J. Sun, H.E. Katz, F. Fang, and R.L. Opila, ACS Appl. Mater. Interfaces 2, 3170 (2010).

    Article  CAS  Google Scholar 

  16. D.-Y. Kim, Y.-S. Kim, K.-W. Choi, J.C. Jaime, and C.-H. Yu, ACS Nano 4, 513 (2010).

    Article  CAS  Google Scholar 

  17. K.C. See, J.P. Feser, E. Cynthia, A. Majumdar, J.J. Urban, and R.A. Segalman, Nano Lett. 10, 4664 (2010).

    Article  CAS  Google Scholar 

  18. L. Wang, D.-G. Wang, G.-M. Zhu, J.-Q. Li, and F. Pan, Mater. Lett. 65, 1086 (2011).

    Article  CAS  Google Scholar 

  19. C. Liu, F. Jiang, M. Huang, B. Lu, R. Yue, and J. Xu, J. Electron. Mater. 40, 948 (2011).

    Article  CAS  Google Scholar 

  20. Y. Wang, K. Cai, and X. Yao, ACS Appl. Mater. Interfaces 3, 1163 (2011).

    Article  Google Scholar 

  21. T. Teranishi, S. Hasegawa, T. Shimizu, and M. Miyake, Adv. Mater. 13, 1699 (2001).

    Article  CAS  Google Scholar 

  22. Y. Xia and J. Ouyang, J. Mater. Chem. 21, 4927 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Toshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toshima, N., Jiravanichanun, N. & Marutani, H. Organic Thermoelectric Materials Composed of Conducting Polymers and Metal Nanoparticles. J. Electron. Mater. 41, 1735–1742 (2012). https://doi.org/10.1007/s11664-012-2041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2041-6

Keywords

Navigation