Skip to main content
Log in

Mechanical Properties of Anisotropic Conductive Adhesive Film Under Hygrothermal Aging and Thermal Cycling

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Mechanical properties of anisotropic conductive adhesive film (ACF) were investigated experimentally under various environmental conditions. The temperature sweep test was conducted to investigate the effects of temperature on dynamical mechanical properties of the ACF. The ACF exhibited transitions to the glass state, viscoelastic state, and rubber state with increasing temperature, and its glass-transition temperature (T g) was determined to be 149°C. The creep-recovery behaviors of the ACF were investigated, and it was found that the initial strains, instantaneous strains, and creep or recovery rates increased with increasing temperature. No obvious creep phenomenon was observed at low temperatures (≤0°C). The creep strain and creep rates at any time decreased with increasing hygrothermal aging time. The uniaxial tensile behaviors of the ACF were also investigated under hygrothermal aging and thermal cycling. The results show that the Young’s modulus and tensile strength of the ACF decrease with increasing hygrothermal aging time; however, they increase at first and then decrease with increasing thermal cycling time. T g decreases slightly for the ACF after hygrothermal aging; however, it increases after thermal cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.K. Kang and S. Purushothaman, J. Electron. Mater. 28, 1314 (1999).

    Article  CAS  Google Scholar 

  2. W.S. Kwon and K.W. Paik, Int. J. Adhesion Adhesives 24, 135 (2004).

    Article  CAS  Google Scholar 

  3. J.H. Zhang, Y.C. Chan, Z.M. Zeng, and Y.W. Chiu, in Proceedings of Electrical Components and Technology Conference (IEEE, 2002), p. 1569.

  4. K. Pinardi, Z. Lai, D. Vogel, Y.L. Kang, J. Liu, S. Liu, R. Haug, and M. Willander, IEEE Trans. Compon. Packag. Technol. 23, 447 (2000).

    Article  Google Scholar 

  5. V.A. Chiriac and T.Y.T. Lee, IEEE Trans. Compon. Packag. Technol. 24, 673 (2001).

    Article  Google Scholar 

  6. G. Sarkar, S. Mridha, T.T. Chong, W.Y. Tuck, and S.C. Kwan, J. Mater. Process. Technol. 89–90, 484 (1999).

    Article  Google Scholar 

  7. S.A. Jr. Vona, Q.K. Tong, R. Kuder, and D. Shenfield, in International Symposium on Advanced Packaging Materials (IEEE, 1998), p. 261.

  8. M. Zwolinski, J. Hickman, H. Rubin, Y. Zaks, S. McCarthy, T. Hanlon, P. Arrowsmith, A. Chaudhuri, R. Hermansen, S. Lau, and D. Napp, IEEE Trans. Compon. Packag. Manuf. Technol. C 19, 241 (1996).

    Article  Google Scholar 

  9. C.W. Tan, Y.W. Chiu, and Y.C. Chan, Mater. Sci. Eng. B 98, 255 (2003).

    Article  Google Scholar 

  10. J. Liu, K. Gustafsson, Z. Lai, and C. Li, IEEE Trans. Compon. Packag. Manuf. Technol. 20, 21 (1997).

    Article  CAS  Google Scholar 

  11. Y.C. Chan and D.Y. Luk, Microelectron. Reliab. 42, 1185 (2002).

    Article  Google Scholar 

  12. Y.C. Chan and D.Y. Luk, Microelectron. Reliab. 42, 1195 (2002).

    Article  Google Scholar 

  13. C.W. Tan, Y.C. Chan, and N.H. Yeung, Microelectron. Reliab. 43, 481 (2003).

    Article  Google Scholar 

  14. X. Chen, J. Zhang, C.L. Jiao, and Y.M. Liu, Microelectron. Reliab. 46, 774 (2006).

    Article  CAS  Google Scholar 

  15. Y.C. Lin, X. Chen, and Z.P. Wang, J. Adhesion Sci. Technol. 20, 1383 (2006).

    Article  CAS  Google Scholar 

  16. J. Haase, D. Farley, P. Iyer, P. Baumgartner, A. Dasgupta, and J. Caers, J. Adhesion Sci. Technol. 22, 1733 (2008).

    Article  CAS  Google Scholar 

  17. J.S. Hwang, M.J. Yim, and K.W. Paik, Microelectron. Reliab. 48, 293 (2008).

    Article  CAS  Google Scholar 

  18. D. Lu and C.P. Wong, J. Adhesion Sci. Technol. 22, 835 (2008).

    Article  CAS  Google Scholar 

  19. D. Lu and C.P. Wong, J. Appl. Polym. Sci. 74, 399 (1999).

    Article  CAS  Google Scholar 

  20. X. Chen, J. Zhang, and Z.P. Wang, in Proceedings of the 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Las Vegas, NV, 2004), p. 453.

  21. L.L. Mercado, J. White, V. Sarihan, T.Y.T Lee. IEEE Trans. Compon. Packag. Technol. 26, 509 (2003)

    Google Scholar 

  22. C.W. Tan, Y.C. Chan, and N.H. Yeung, Microelectron. Reliab. 43, 279 (2003).

    Article  CAS  Google Scholar 

  23. E. Jokinen and E. Ristolainen, Microelectron. Reliab. 42, 1913 (2002).

    Article  CAS  Google Scholar 

  24. C.T. Murray, P.B. Hogerton, T. Chheang, R.L. Rudman, and H. Egeberg, in 4th International Conference on Adhesive Joining and Coating Technology in Electronics Manufacturing (Espoo, Finland, 2000), p. 820.

  25. X. Chen, J. Zhang, and Z.P. Wang, in 9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Las Vegas, NV, 2004), p. 453.

  26. J.H. Zhang and Y.C. Chan, J. Electron. Mater. 32, 228 (2003).

    Article  CAS  Google Scholar 

  27. A. Nagai, K. Takemura, K. Isaka, O. Watanabe, K. Kojima, K. Matsuda, and I. Watanabe, in 2nd IEMT/IMC Symposium (IEEE, 1998), p. 353.

  28. A. Gasse, C. Rossat, J.C. Souriau, C. Gillot, F. Glasser, and J.C. Clemens, in Nuclear Science Symposium Conference Record (IEEE, 2003), p. 237.

  29. H. Li, K.S. Moon, Y. Li, L. Fan, J. Xu, and C.P. Wong, in 54th IEEE Electronic Components and Technology Conference (IEEE, 2004), p. 165.

  30. S.Y. Yang, W.S. Kwon, S.B. Lee, and K.W. Paik, Key Eng. Mater. 297–300, 887 (2005).

    Article  Google Scholar 

  31. L.L. Gao, X. Chen, S.B. Zhang, and H. Gao, Mater. Sci. Eng. A 513–514, 216 (2009).

    Google Scholar 

  32. Y.H. Mei, X. Chen, and H. Gao, J. Electron. Mater. 38, 2415 (2009).

    Article  CAS  Google Scholar 

  33. Y.C. Lin, X.M. Chen, and J. Zhang, Polym. Test. 30, 8 (2010).

    Article  Google Scholar 

  34. J. Ma, H. Gao, L.L. Gao, and X. Chen, Polym. Test. 30, 571 (2011).

    Article  CAS  Google Scholar 

  35. J. Tao, Z.J. Yao, and F. Xie, Fundamentals of Materials Science (Beijing: Chemical Industry, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, LL., Chen, X. & Gao, H. Mechanical Properties of Anisotropic Conductive Adhesive Film Under Hygrothermal Aging and Thermal Cycling. J. Electron. Mater. 41, 2001–2009 (2012). https://doi.org/10.1007/s11664-012-2014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2014-9

Keywords

Navigation