Journal of Electronic Materials

, Volume 41, Issue 10, pp 2912–2916 | Cite as

Post-growth Annealing of Cadmium Zinc Telluride Crystals for Room-Temperature Radiation Detectors

  • G. Yang
  • A.E. Bolotnikov
  • P.M. Fochuk
  • Y. Cui
  • G. S. Camarda
  • A. Hossain
  • K. H. Kim
  • J. Horace
  • B. McCall
  • R. Gul
  • O.V. Kopach
  • S.U. Egarievwe
  • R.B. James
Article

We investigated the effects of post-growth annealing on cadmium zinc telluride crystals intended for use as room-temperature radiation detectors. Annealing under Cd vapor effectively eliminated Te inclusions. The material’s resistivity was lowered, and loss of Zn component was observed. Annealing under Cd + Zn vapors similarly removed Te inclusions. Furthermore, after exposure to the two vapors, we noted a change in the crystal surface morphology, i.e., formation of patterns of parallel lines. In contrast to annealing under Cd vapor alone, high resistivity was maintained after suitably controlling the Cd and Zn pressures.

Keywords

CZT post-growth annealing Te inclusions resistivity surface morphology 

References

  1. 1.
    R.B. James, T.E. Schlesinger, J.C. Lund, and M. Schieber, Semiconductors for Room Temperature Nuclear Detector Applications, Vol. 43 (New York: Academic, 1995), p. 334.CrossRefGoogle Scholar
  2. 2.
    C. Szeles, S.A. Soldner, S. Vydrin, J. Graves, and D.S. Bale, IEEE Trans. Nucl. Sci. 54, 1350 (2007).CrossRefGoogle Scholar
  3. 3.
    A.E. Bolotnikov, N. Abdul-Jabber, S. Babalola, G.S. Camarda, Y. Cui, A. Hossain, E. Jackson, H. Jackson, J. James, K.T. Kohman, A. Luryi, and R.B. James, IEEE Trans. Nucl. Sci. 55, 2757 (2008).CrossRefGoogle Scholar
  4. 4.
    H.R. Vydyanath, J. Ellsworth, J.J. Kennedy, B. Dean, C.J. Johnson, G.T. Neugebauer, J. Sepich, and P.-K. Liao, J. Vac. Sci. Technol. B 10, 1476 (1992).CrossRefGoogle Scholar
  5. 5.
    J. Shen, D.K. Aidun, L. Regel, and W.R. Wilcox, J. Cryst. Growth 132, 250 (1993).CrossRefGoogle Scholar
  6. 6.
    V. Babentsov, J. Franc, P. Hoschl, M. Fiederle, K.W. Benz, N.V. Sochinskii, E. Dieguez, and R.B. James, Cryst. Res. Technol. 44, 1054 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K.W. Bens, W. Stadler, D.M. Hofmann, and B.K. Meyer, J. Appl. Phys. 84, 6689 (1998).CrossRefGoogle Scholar
  8. 8.
    G. Yang, A.E. Bolotnikov, Y. Cui, G.S. Camarda, A. Hossain, K.H. Kim, R. Gul, and R.B. James, Appl. Phys. Lett. 98, 261901 (2011).CrossRefGoogle Scholar
  9. 9.
    T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. Rep. 32, 103 (2001).CrossRefGoogle Scholar
  10. 10.
    E.D. Jones, J.C. Clark, J.B. Mullin, and A.W. Brinkman, J. Cryst. Growth 138, 274 (1994).CrossRefGoogle Scholar
  11. 11.
    N. Aslam, E.D. Jones, T.C.Q. Noakes, J.B. Mullin, and A.F.W. Willoughby, J. Cryst. Growth 117, 249 (1992).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • G. Yang
    • 1
  • A.E. Bolotnikov
    • 1
  • P.M. Fochuk
    • 1
    • 2
  • Y. Cui
    • 1
  • G. S. Camarda
    • 1
  • A. Hossain
    • 1
  • K. H. Kim
    • 1
  • J. Horace
    • 1
    • 3
  • B. McCall
    • 1
    • 3
  • R. Gul
    • 1
  • O.V. Kopach
    • 1
    • 2
  • S.U. Egarievwe
    • 1
    • 3
  • R.B. James
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA
  2. 2.Chernivtsi National UniversityChernivtsiUkraine
  3. 3.Alabama A&M UniversityHuntsvilleUSA

Personalised recommendations