Journal of Electronic Materials

, Volume 41, Issue 10, pp 2846–2851 | Cite as

Dynamical X-ray Diffraction from ZnSySe1−y/GaAs (001) Multilayers and Superlattices with Dislocations

Article

Abstract

High-resolution x-ray diffraction is a valuable nondestructive tool for structural characterization of semiconductor heterostructures, and the diffraction profiles contain information on the depth profiles of strain, composition, and defect densities in device structures. Much of this information goes untapped because the lack of phase information prevents direct inversion of the diffraction profile. The current practice is to use dynamical simulations in conjunction with a curve-fitting procedure to indirectly extract the profiles of strain and composition. These dynamical simulations have been based on perfect, dislocation-free laminar crystals, rendering the analysis inapplicable to structures having dislocation densities greater than about 106 cm−2. In this work we present a dynamical model for Bragg x-ray diffraction in semiconductor device structures with nonuniform composition, strain, and dislocation density, which is based on the Takagi–Taupin equation for distorted crystals and accounts for the angular and strain broadening of dislocations. We show that the x-ray diffraction profiles from ZnSySe1−y multilayers and superlattices are strongly affected by the depth distribution of the dislocation density as well as the composition, suggesting that it should be possible to extract the profiles of composition, strain, and dislocation density by the analysis of measured diffraction profiles.

Keywords

ZnSSe dislocations dynamical x-ray diffraction multilayers superlattices 

References

  1. 1.
    S. Takagi, Acta Crystallogr. 15, 1311 (1962).CrossRefGoogle Scholar
  2. 2.
    D. Taupin, C. R. Acad. Sci. 256, 4881 (1963).Google Scholar
  3. 3.
    S. Takagi, J. Phys. Soc. Jpn. 26, 1239 (1969).CrossRefGoogle Scholar
  4. 4.
    M.A.G. Halliwell, M.H. Lyons, and M.J. Hill, J. Cryst. Growth 68, 523 (1984).CrossRefGoogle Scholar
  5. 5.
    C.R. Wie, T.A. Tombrello, and T. Vreeland Jr, J. Appl. Phys. 59, 3743 (1986).CrossRefGoogle Scholar
  6. 6.
    W.J. Bartels, J. Hornstra, and D.J.W. Lobeek, Acta Crystallogr. A42, 539 (1986).Google Scholar
  7. 7.
    V.S. Speriosu, J. Appl. Phys. 52, 6094 (1981).CrossRefGoogle Scholar
  8. 8.
    V.S. Speriosu and T. Vreeland Jr, J. Appl. Phys. 56, 1591 (1984).CrossRefGoogle Scholar
  9. 9.
    L. Tapfer and K. Ploog, Phys. Rev. B 40, 9802 (1989).CrossRefGoogle Scholar
  10. 10.
    C.R. Wie, J. Appl. Phys. 65, 1036 (1989).CrossRefGoogle Scholar
  11. 11.
    C.R. Wie and H.M. Kim, J. Appl. Phys. 69, 6406 (1991).CrossRefGoogle Scholar
  12. 12.
    M.A. Krivoglaz and K.P. Ryaboshapka, Fiz. Met. Metalloved. 15, 18 (1963).Google Scholar
  13. 13.
    L.E. Levine and R. Thomson, Acta Crystallogr. 53, 590 (1997).CrossRefGoogle Scholar
  14. 14.
    J.A. Prins, Z. Phys. 63, 477 (1930).CrossRefGoogle Scholar
  15. 15.
    P. Gay, P.B. Hirsch, and A. Kelly, Acta Metallurg. 1, 315 (1953).CrossRefGoogle Scholar
  16. 16.
    M.J. Hordon and B.L. Averbach, Acta Metallurg. 9, 237 (1961).CrossRefGoogle Scholar
  17. 17.
    J.E. Ayers, J. Cryst. Growth 135, 71 (1994).CrossRefGoogle Scholar
  18. 18.
    W.J. Bartels, J. Vac. Sci. Technol. B 1, 338 (1983).CrossRefGoogle Scholar
  19. 19.
    W.J. Bartels, Philips Tech. Rev. 41, 183 (1983/1984).Google Scholar
  20. 20.
    S. Kalisetty, J. Robinson, X.G. Zhang, J.E. Ayers, and F.C. Jain, Proceedings of 9th International Conference on Vapor Growth and Epitaxy (Vail, CO, August 4–9, 1996), p. 177.Google Scholar
  21. 21.
    X.G. Zhang, D.W. Parent, P. Li, A. Rodriguez, G. Zhao, J.E. Ayers, and F.C. Jain, J. Vac. Sci. Technol. B 18, 1375 (2000).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentUniversity of ConnecticutStorrsUSA

Personalised recommendations