Journal of Electronic Materials

, Volume 41, Issue 10, pp 2725–2729 | Cite as

Colloidal HgTe Material for Low-Cost Detection into the MWIR

  • Emmanuel Lhuillier
  • Sean Keuleyan
  • Heng Liu
  • Philippe Guyot-SionnestEmail author


We report on HgTe colloidal-based quantum-dot mid-infrared (IR) photodetectors. We demonstrate tuning the cutoff wavelength of this detector from the near IR up to 7 μm. Responsivity values of films of HgTe nanoparticles a few hundred nanometers thick are in the 100 mA W−1 range even at room temperature. The detectivity of this film is limited by large 1/f noise. Time responses as short as 200 ns are achieved.


Colloidal quantum dot HgTe mid-infrared photodetectors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Breiter, J. Wendler, H. Lutz, S. Rutzinger, K. Hofmann, and J. Ziegler, Proc. SPIE 7298, 72981W (2009).CrossRefGoogle Scholar
  2. 2.
    P. Chorier and P.M. Tribolet, Proc. SPIE 4369, 698 (2001).CrossRefGoogle Scholar
  3. 3.
    M.Z. Tidrow and W.R. Dyer, Infrared Phys. Technol. 42, 333 (2001).CrossRefGoogle Scholar
  4. 4.
    D. Talapin, J.S. Lee, M. Kovalenko, and E. Shevchenko, Chem. Rev. 110, 389 (2010).CrossRefGoogle Scholar
  5. 5.
    C.B. Murray, D.J. Norris, and M.G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
  6. 6.
    V. Wood and V. Bulović, Nano Rev. 1, 5202 (2010).Google Scholar
  7. 7.
    B. Dubertret, P. Skourides, D.J. Norris, V. Noireaux, A.H. Brivanlou, and A. Libchaber, Science 298, 1759 (2002).CrossRefGoogle Scholar
  8. 8.
    A.J. Nozik, Phys. E 14, 115 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Reddy, J.M. Peterson, D.D. Lofgreen, J.A. Franklin, T. Vang, E.P.G. Smith, J.G.A. Wehner, I. Kasai, J.W. Bangs, and S.M. Johnson, J. Electron. Mater. 37, 1274 (2008).CrossRefGoogle Scholar
  10. 10.
    G. Konstantatos, C. Huang, L. Levina, Z. Lu, and E.H. Sargent, Adv. Funct. Mater. 15, 1865 (2005).CrossRefGoogle Scholar
  11. 11.
    J.M. Pietryga, R.D. Schaller, D. Werder, M.H. Stewart, V.I. Klimov, and J.A. Hollingsworth, J. Am. Chem. Soc. 126, 11752 (2004).CrossRefGoogle Scholar
  12. 12.
    T. Rauch, M. Böberl, S.F. Tedde, J. Fürst, M.V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, Nat. Photonics 3, 332 (2009).CrossRefGoogle Scholar
  13. 13.
    M.V. Kovalenko, E. Kaufmann, D. Pachinger, J. Roither, M. Huber, J. Stangl, G. Hesser, F. Schaffler, and W. Heiss, J. Am. Chem. Soc. 128, 3516 (2006).CrossRefGoogle Scholar
  14. 14.
    S. Keuleyan, E. Lhuillier, V. Brajuskovic, and P. Guyot-Sionnest, Nat. Photonics 5, 489 (2011).CrossRefGoogle Scholar
  15. 15.
    S. Keuleyan, E. Lhuillier, and P. Guyot-Sionnest, J. Am. Chem. Soc. 133, 16422 (2011).CrossRefGoogle Scholar
  16. 16.
    H. Liu and P. Guyot-Sionnest, J. Phys. Chem. 114, 14860 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Dobrowolska, A. Mycielsji, and W. Dobrowolski, Solid State Commun. 27, 1233 (1978).CrossRefGoogle Scholar
  18. 18.
    C.S. Guenzer and A. Bienenstock, Phys. Rev. B 8, 4655 (1973).CrossRefGoogle Scholar
  19. 19.
    E. Lhuillier, S. Keuleyan, P. Rekemeyer, and P. Guyot-Sionnest, J. Appl. Phys. 110, 032110 (2011).CrossRefGoogle Scholar
  20. 20.
    E.P. Vandamme and L.K.J. Vandamme, Microelectron. Reliab. 40, 1847 (2000).CrossRefGoogle Scholar

Copyright information

© TMS 2012

Authors and Affiliations

  • Emmanuel Lhuillier
    • 1
  • Sean Keuleyan
    • 1
  • Heng Liu
    • 1
  • Philippe Guyot-Sionnest
    • 1
    Email author
  1. 1.James Franck InstituteThe University of ChicagoChicagoUSA

Personalised recommendations