Skip to main content
Log in

Influence of Substrate Temperature on Structural Properties and Deposition Rate of AlN Thin Film Deposited by Reactive Magnetron Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Aluminum nitride (AlN) thin films with c-axis preferred orientation have been prepared by reactive direct-current (DC) magnetron sputtering. The degree of preferred crystal orientation, the cross-sectional structure, and the surface morphology of AlN thin films grown on Si (100) substrates at various substrate temperatures from 60°C to 520°C have been investigated by x-ray diffraction, scanning electron microscopy, and atomic force microscopy. Results show that the substrate temperature has a significant effect on the structural properties, such as the degree of c-axis preferred orientation, the full-width at half-maximum (FWHM) of the rocking curve, the surface morphology, and the cross-sectional structure as well as the deposition rate of the AlN thin films. The optimal substrate temperature is 430°C, with corresponding root-mean-square surface roughness (R rms) of 1.97 nm, FWHM of AlN (002) diffraction of 2.259°, and deposition rate of 20.86 nm/min. The mechanisms behind these phenomena are discussed. Finally, film bulk acoustic resonators based on AlN films were fabricated; the corresponding typical electromechanical coupling coefficient (k 2t ) is 5.1% with series and parallel frequencies of 2.37 GHz and 2.42 GHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.M. Lakin, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 707 (2005).

    Article  Google Scholar 

  2. D. Liufu and K.C. Kao, J. Vac. Sci. Technol. A 16, 2360 (1998).

    Article  CAS  Google Scholar 

  3. S.H. Hoang and G.S. Chung, Microelectron. Eng. 86, 2149 (2009).

    Article  CAS  Google Scholar 

  4. E. Iborra, J. Olivares, M. Clement, L. Vergara, A. Sanz-Hervas, and J. Sangrador, Sens. Actuators A Phys. 115, 501 (2004).

    Article  Google Scholar 

  5. J. Bjurstrom, D. Rosen, I. Katardjiev, V.M. Yanchev, and I. Petrov, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1347 (2004).

    Article  Google Scholar 

  6. Y.A. Xi, K.X. Chen, F. Mont, J.K. Kim, E.F. Schubert, C. Wetzel, W. Liu, X. Li, and J.A. Smart, J. Electron. Mater. 36, 533 (2007).

    Article  CAS  Google Scholar 

  7. S.S. Hullavarad, R.D. Vispute, B. Nagaraj, V.N. Kulkarni, S. Dhar, T. Venkatesan, K.A. Jones, M. Derenge, T. Zheleva, M.H. Ervin, A. Lelis, L.J. Scozzie, D. Habersat, A.E. Wickenden, L.J. Currano, and M. Dubey, J. Electron. Mater. 35, 777 (2006).

    Article  CAS  Google Scholar 

  8. G. Kipshidze, S. Nikishin, V. Kuryatkov, K. Choi, I. Gherasoiu, T. Prokofyeva, M. Holtz, H. Temkin, K.D. Hobart, F.J. Kub, and M. Fatemi, J. Electron. Mater. 30, 825 (2001).

    Article  CAS  Google Scholar 

  9. M. Ishihara, H. Yumoto, T. Tsuchiya, and K. Akashi, Thin Solid Films 282, 321 (1996).

    Article  Google Scholar 

  10. T.L. Hu, S.W. Mao, C.P. Cha, M. Wu, H.L. Huang, and D. Gan, J. Electron. Mater. 36, 81 (2007).

    Article  CAS  Google Scholar 

  11. J.B. Lee, J.P. Jung, M.H. Lee, and J.S. Park, Thin Solid Films 447, 610 (2004).

    Article  Google Scholar 

  12. J. Xiong, H.S. Gu, W. Wu, M.Z. Hu, P.F. Du, and H. Xie, J. Electron. Mater. 40, 1578 (2011).

    Article  CAS  Google Scholar 

  13. H.E. Cheng, T.C. Lin, and W.C. Chen, Thin Solid Films 425, 85 (2003).

    Article  CAS  Google Scholar 

  14. F. Martin, M.E. Jan, B. Belgacem, M.A. Dubois, and P. Muralt, Thin Solid Films 514, 341 (2006).

    Article  CAS  Google Scholar 

  15. H.C. Seo, I. Petrov, and K. Kim, J. Electron. Mater. 39, 1146 (2010).

    Article  CAS  Google Scholar 

  16. H.C. Barshiha, B. Deepthi, and K.S. Rajam, Thin Solid Films 516, 4168 (2008).

    Article  Google Scholar 

  17. K.S. Kao, C.C. Cheng, and Y.C. Chen, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 345 (2002).

    Article  Google Scholar 

  18. T.T. Leung and C.W. Ong, Diam. Relat. Mater. 13, 1603 (2004).

    Article  CAS  Google Scholar 

  19. A. Artieda, M. Barbieri, C.S. Sandu, and P. Muralt, J. Appl. Phys. 105, 0245042 (2009).

    Article  Google Scholar 

  20. G.F. Iriarte, J.G. Rodriguez, and F. Calle, Mater. Res. Bull. 45, 1039 (2010).

    Article  CAS  Google Scholar 

  21. W.J. Liu, S.J. Wu, C.M. Chen, Y.C. Lai, and C.H. Chuang, J. Cryst. Growth 276, 525 (2005).

    Article  CAS  Google Scholar 

  22. A. Ababneh, U. Schmid, J. Hernando, J.L. Sanchez-Rojas, and H. Seidel, Mater. Sci. Eng. B Adv. Funct. Solid-State Mater. 172, 253 (2010).

    CAS  Google Scholar 

  23. Y.R. Lin and S.T. Wu, Surf. Sci. 516, L535 (2002).

    Article  CAS  Google Scholar 

  24. F. Martin, M.E. Jan, S. Rev-Mermet, B. Belgacem, D. Su, M. Cantoni, and P. Muralt, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1339 (2006).

    Article  Google Scholar 

  25. H.W. Jang, H.C. Kang, D.Y. Noh, and M.S. Yi, J. Appl. Phys. 94, 2957 (2003).

    Article  CAS  Google Scholar 

  26. K.H. Chiu, J.H. Chen, H.R. Chenc, and R.S. Huang, Thin Solid Films 515, 4819 (2007).

    Article  CAS  Google Scholar 

  27. M. Ishihara, S.J. Li, H. Yumoto, K. Akashi, and Y. Ide, Thin Solid Films 316, 152 (1998).

    Article  CAS  Google Scholar 

  28. I. Ivanov, L. Hultman, K. Jarrendahl, P. Martensson, J.E. Sundgren, B. Hjorvarsson, and J.E. Greene, J. Appl. Phys. 78, 5721 (1995).

    Article  CAS  Google Scholar 

  29. C.L. Huang, K.W. Tay, and L. Wu, Solid-State Electron. 49, 219 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Feng, B., Dong, S. et al. Influence of Substrate Temperature on Structural Properties and Deposition Rate of AlN Thin Film Deposited by Reactive Magnetron Sputtering. J. Electron. Mater. 41, 1948–1954 (2012). https://doi.org/10.1007/s11664-012-1999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1999-4

Keywords

Navigation