Skip to main content
Log in

Thermoelectric Properties of Cold-Pressed Higher Manganese Silicides for Waste Heat Recovery

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Polycrystalline higher manganese silicide (HMS) samples with different grain sizes have been obtained by cold-pressing HMS powder under high pressure of about 3 GPa and postprocessing annealing. It was found that the cold-pressing process can reduce the grain size of HMS to 120 nm. The cold-pressed pellets were then annealed at different temperatures to obtain a series of samples with different grain sizes. For comparison, an additional sample was prepared in a regular die under low pressure of 300 MPa, which resulted in lower density and higher porosity than the high-pressure process. For these samples, the effect of grain size and porosity on Seebeck coefficient was not as apparent as that on electrical conductivity and thermal conductivity. The electrical conductivity of the cold-pressed samples increases as the grains grow, and the grain boundary connection is improved during the postprocessing annealing. A significant reduction in the thermal conductivity of the cold-pressed samples was observed. The sample prepared with the low-pressure pressing shows the lowest thermal conductivity of 1.2 W m−1 K−1 at 300 K, which can be attributed to its high porosity of 34% and low phonon transmission coefficient through the grain boundaries. The low-temperature thermal conductivity data of all samples were analyzed to obtain the phonon transmission coefficient and the Kapitza resistance at the grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. DiSalvo, Science 285, 703 (1999).

    Article  CAS  Google Scholar 

  2. B.C. Sales, Science 295, 1248 (2002).

    Article  CAS  Google Scholar 

  3. L.D. Hicks and M.S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  CAS  Google Scholar 

  4. J. Androulakis, K.F. Hsu, R. Pcionek, H. Kong, C. Uher, J.J. Dangelo, A. Downey, T. Hogan, and M.G. Kanatzidis, Adv. Mater. 18, 1170 (2006).

    Article  CAS  Google Scholar 

  5. G. Joshi, H. Lee, Y.C. Lan, X.W. Wang, G.H. Zhu, D.Z. Wang, R.W. Gould, D.C. Cuff, M.Y. Tang, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Nano Lett. 8, 4670 (2008).

    Article  CAS  Google Scholar 

  6. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X.A. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  7. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  8. X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, and X.B. Zhang, Appl. Phys. Lett. 86, 062111 (2005).

    Article  Google Scholar 

  9. W.J. Xie, X.F. Tang, Y.G. Yan, Q.J. Zhang, and T.M. Tritt, Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  10. D.M. Rowe and V.S. Shukla, J. Appl. Phys. 52, 7421 (1981).

    Article  CAS  Google Scholar 

  11. H.J. Goldsmid and A.W. Penn, Phys. Lett. A 27, 523 (1968).

    Article  CAS  Google Scholar 

  12. J.E. Parrott, J. Phys. C Solid State Phys. 2, 147 (1969).

    Article  Google Scholar 

  13. D.H. Kim and T. Mitani, J. Alloys Compd. 399, 14 (2005).

    Article  CAS  Google Scholar 

  14. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E.C. Muller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).

    Article  CAS  Google Scholar 

  15. Z.J. Wang, J.E. Alaniz, W.Y. Jang, J.E. Garay, and C. Dames, Nano Lett. 11, 2206 (2011).

    Article  CAS  Google Scholar 

  16. H. Nowotny, The Chemistry of Extended Defects in Non-Metallic Solids, ed. L. Eyring and M. OKeeffe (Amsterdam: North-Holland, 1970), p. 223.

    Google Scholar 

  17. O.G. Karpinski and B.A. Evseev, Izv. Akad. Nauk SSSR Neorg. Materialy 5, 525 (1969).

    Google Scholar 

  18. O. Shwomma, A. Preisinger, H. Nowotny, and A. Wittman, Monatsh. Chem. 95, 1527 (1964).

    Article  Google Scholar 

  19. H.W. Knott, M.H. Mueller, and L. Heaton, Acta Crystallogr. 23, 549 (1967).

    Article  CAS  Google Scholar 

  20. G. Zwilling and H. Nowotny, Monatsh. Chem. 102, 672 (1971).

    Article  CAS  Google Scholar 

  21. I. Aoyama, M.I. Fedorov, V.K. Zaitsev, F.Y. Solomkin, I.S. Eremin, A.Y. Samunin, M. Mukoujima, S. Sano, and T. Tsuji, Jpn. J. Appl. Phys. 44, 8562 (2005).

    Article  CAS  Google Scholar 

  22. I. Kawasumi, M. Sakata, I. Nishida, and K. Masumoto, J. Mater. Sci. 16, 355 (1981).

    Article  CAS  Google Scholar 

  23. U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, J. Alloys Compd. 361, 13 (2003).

    Article  CAS  Google Scholar 

  24. S. Okada, T. Shishido, Y. Ishizawa, M. Ogawa, K. Kudou, T. Fukuda, and T. Lundstrom, J. Alloys Compd. 317, 315 (2001).

    Article  Google Scholar 

  25. F.Y. Solomkin, V.K. Zaitsev, N.F. Kartenko, A.S. Kolosova, A.Y. Samunin, and G.N. Isachenko, Tech. Phys. 53, 1636 (2008).

    Article  CAS  Google Scholar 

  26. N.L. Okamoto, T. Koyama, K. Kishida, K. Tanaka, and H. Inui, Acta Mater. 57, 5036 (2009).

    Article  CAS  Google Scholar 

  27. A.J. Zhou, X.B. Zhao, T.J. Zhu, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, Mater. Chem. Phys. 124, 1001 (2010).

    Article  CAS  Google Scholar 

  28. A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T. Dasgupta, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 39, 2002 (2010).

    Article  CAS  Google Scholar 

  29. W.H. Luo, H. Li, Y.G. Yan, Z.B. Lin, X.F. Tang, Q.J. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  CAS  Google Scholar 

  30. W.H. Luo, H. Li, F. Fu, W. Hao, and X.F. Tang, J. Electron. Mater. 40, 1233 (2011).

    Article  CAS  Google Scholar 

  31. M. Umemoto, Z.G. Liu, R. Omatsuzawa, and K. Tsuchiya, Mater. Sci. Forum Vols. 343–346, 918 (2000).

    Article  Google Scholar 

  32. J.G. Cheng, J.S. Zhou, and J.B. Goodenough, Phys. Rev. B 82, 132103 (2010).

    Article  Google Scholar 

  33. R.L. Coble, J. Appl. Phys. 32, 787 (1961).

    Article  CAS  Google Scholar 

  34. M.I. Fedorov and V.K. Zaitsev, CRC Handbook of Thermoelectrics: Macro to Nano, ed. D.M. Rowe (Boca Raton, FL: CRC, 2006), pp. 31.

    Google Scholar 

  35. N.F. Mott, Metal-Insulator Transition (London: Taylor & Francis, 1990).

    Google Scholar 

  36. E. Groß, M. Riffel, and U. Stohrer, J. Mater. Res. 10, 34 (1995).

    Article  Google Scholar 

  37. D.A. Polvani, J.F. Meng, N.V.C. Shekar, J. Sharp, and J.V. Badding, Chem. Mater. 13, 2068 (2001).

    Article  CAS  Google Scholar 

  38. V.K. Zaitsev, M.I. Fedorov, K.A. Rakhimov, A.E. Engalychev, and V.V. Popov, Sov. Phys. Solid State 26, 494 (1984).

    Google Scholar 

  39. C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, J. Appl. Phys. 81, 6692 (1997).

    Article  CAS  Google Scholar 

  40. A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, J. Electron. Mater. 38, 1072 (2009).

    Article  CAS  Google Scholar 

  41. D.B. Migas, V.L. Shaposhnikov, A.B. Filonov, V.E. Borisenko, and N.N. Dorozhkin, Phys. Rev. B 77, 075205 (2008).

    Article  Google Scholar 

  42. S. Yabuuchi, H. Kageshima, Y. Ono, M. Nagase, A. Fujiwara, and E. Ohta, Phys. Rev. B 78, 045307 (2008).

    Article  Google Scholar 

  43. C.W. Nan and R. Birringer, Phys. Rev. B 57, 8264 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Weathers, A., Moore, A. et al. Thermoelectric Properties of Cold-Pressed Higher Manganese Silicides for Waste Heat Recovery. J. Electron. Mater. 41, 1564–1572 (2012). https://doi.org/10.1007/s11664-012-1987-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1987-8

Keywords

Navigation