Skip to main content
Log in

High-Resolution Mobility Spectrum Analysis of Multicarrier Transport in Advanced Infrared Materials

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper the recently developed high-resolution mobility spectrum analysis is demonstrated. In a number of simulations the high resolution of the algorithm is demonstrated in the high and low mobility ranges. The effect of random noise, maximum magnetic field limit, and the number of magnetic field points used in the experiment is also demonstrated. Also discussed are requirements critical for obtaining high-quality experimental data. The application of this new algorithm to complex semiconductor structures to study lateral and vertical transport is also demonstrated, resulting in insight into previously unavailable details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Zemel, A. Sher, and D. Eger, J. Appl. Phys. 62, 1861 (1987).

    Article  CAS  Google Scholar 

  2. M.C. Gold and D.A. Nelson, J. Vac. Sci. Technol. A4, 2040 (1986).

    Google Scholar 

  3. Y.G. Arapov, A.B. Davydov, I.M. Tsidilkovskii, and N.G. Shelushinina, Phys. Status. Solidi. B 110, 619 (1982).

    Article  CAS  Google Scholar 

  4. E. Finkman and Y. Nemirovsky, J. Appl. Phys. 53, 1052 (1982).

    Article  CAS  Google Scholar 

  5. C. Fau, J.F. Dame, M. De Carvalho, J. Calas, M. Averous, and B.A. Lombos, Phys. Status. Solidi. B 125, 831 (1984).

    Article  CAS  Google Scholar 

  6. W.A. Beck and J.R. Anderson, J. Appl. Phys. 62, 541 (1987).

    Article  CAS  Google Scholar 

  7. J.R. Meyer, C.A. Hoffman, F.J. Bartoli, D.J. Arnold, S. Sivananthan, and J.P. Faurie, Semicond. Sci. Technol. 8, 805 (1993).

    Article  CAS  Google Scholar 

  8. J. Antoszewski and L. Faraone, J. Appl. Phys. 80, 3881 (1996).

    Article  CAS  Google Scholar 

  9. Z. Dziuba and M. Gorska, J. Phys. III 2, 110 (1992).

    Google Scholar 

  10. J. Antoszewski, D.J. Seymour, L. Faraone, J.R. Meyer, and C.A. Hoffman, J. Electron. Mater. 24, 1255 (1995).

    Article  CAS  Google Scholar 

  11. I. Vurgaftman, J.R. Meyer, C.A. Hoffman, D. Redfern, J. Antoszewski, L. Faraone, and J. Lindemuth, J. Appl. Phys. 84, 4966 (1998).

    Article  CAS  Google Scholar 

  12. S. Kiatgamolchai, M. Myronov, O.A. Mironov, V.G. Kantser, E.H.C. Parker, and T.E. Whall, Phys. Rev. E 66, 036705 (2002).

    Article  CAS  Google Scholar 

  13. D. Chrastina, J.P. Hague, and D.R. Leadley, J. Appl. Phys. 94, 6583 (2003).

    Article  CAS  Google Scholar 

  14. J. Rothman, J. Meilhan, G. Perrais, J.-P. Belle, and O. Gravrand, J. Electron. Mater. 35, 1174 (2006).

    Article  CAS  Google Scholar 

  15. G.A. Umana-Membreno, J. Antoszewski, L. Faraone, E.P.G. Smith, G.M. Venzor, S.M. Johnson, and V. Phillips, J. Electron. Mater. 39, 1023 (2010).

    Article  CAS  Google Scholar 

  16. G.A. Umana-Membreno, T. Stomeo, V. Tasco, A. Passaseo, M. de Vittorio, and L. Faraone, Proceedings of the European Solid-State Device Research Conference (ESSDERC), Sevilla, Sept. 2010, p. 182.

  17. A. Rogalski, Opto-Electron. Rev. 16, 458 (2008).

    Article  CAS  Google Scholar 

  18. B. Klein, E. Plis, M.N. Kutty, N. Gautam, A. Albrecht, S. Myers, and S. Krishna, J. Phys. D Appl. Phys. 44, 075102 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antoszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antoszewski, J., Umana-Membreno, G. & Faraone, L. High-Resolution Mobility Spectrum Analysis of Multicarrier Transport in Advanced Infrared Materials. J. Electron. Mater. 41, 2816–2823 (2012). https://doi.org/10.1007/s11664-012-1978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1978-9

Keywords

Navigation