Skip to main content
Log in

New Method for Evaluating the Peltier Coefficient Based on Temperature Measurements in a Thermoelectric Module

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A new method for determining the Peltier coefficient of thermoelectric devices has been developed. The Peltier coefficient has been evaluated by measuring the temperature distribution along the junction of two dissimilar materials X and Y. The energy balance has been used to link the Peltier coefficient with the hot and cold temperatures of the metallic blocks of a thermoelectric module (TEM), thus enabling the evaluation of this coefficient. Data on the thermal conductance of the pellets are also needed. The experimental device used in this paper is a TEM composed of N = 71 couples of bismuth telluride, suitably doped to provide individual n and p elements. Using nominal values given by the manufacturer for the Seebeck coefficient of the TEM, the Onsager reciprocal relation has been confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Cross-section of the conductor (m2)

e > 0:

Magnitude of the electron charge (C particle−1)

I :

Electric current (A)

J U :

Energy flux along the conductor (W)

K :

Thermal conductance (W K−1)

L :

Dimension of the pellet (m)

N :

Number of thermocouples of the TEM

ORR:

Onsager reciprocal relation

Q c :

Heat flux between the cold block of the TEM and the environment (W)

Q h :

Heat flux between the hot block of the TEM and the environment (W)

R Cu :

Electrical resistance of a connector placed between two dies of the TEM (Ω)

t :

Time (s)

T :

Temperature (K)

T c :

Temperature of the cold block of the TEM (°C)

T h :

Temperature of the hot block of the TEM (°C)

T 0 :

Temperature of the environment (°C)

TEM:

Thermoelectric module

V :

Voltage between the terminals of two probes connected to the wire (V)

x :

Abscissa (m)

Z :

Figure of merit (°C−1)

α :

Seebeck coefficient (V K−1)

Γ:

Heat transfer coefficient (W K−1)

κ :

Thermal conductivity (W m−1 K−1)

μ :

Electrochemical potential of electrons (J particle−1)

Π:

Peltier coefficient (V)

ρ :

Electrical resistivity (Ωm)

τ :

Thomson coefficient (V K−1)

M:

Module

n :

n-Type pellet

p :

p-Type pellet

References

  1. J. Garrido, J. Phys. Condens. Matter 21, 155802 (2009).

    Article  Google Scholar 

  2. G. Min, J. Electron. Mater. 39, 2459 (2010).

    Article  CAS  Google Scholar 

  3. J.G. Vián, D. Astrain, A. Rodríguez, and A. Martínez, J. Electron. Mater. 39, 1786 (2010).

    Article  Google Scholar 

  4. E. Hatzikraniotis, K.T. Zorbas, I. Samaras, T.H. Kyratsi, and K.M. Paraskevopoulos, J. Electron. Mater. 39, 2112 (2010).

    Article  CAS  Google Scholar 

  5. G. Fraisse, M. Lazard, C. Goupil, and J.Y. Serrat, Int. J. Heat Mass Transf. 53, 3503 (2010).

    Article  CAS  Google Scholar 

  6. A. Chakraborty, B.B. Saha, S. Koyoma, and K.C. Ng, Int. J. Heat Mass Transf. 49, 3547 (2006).

    Article  Google Scholar 

  7. H. Xiao, X. Gou, and S. Yang, J. Electron. Mater. 40, 1195 (2011).

    Article  CAS  Google Scholar 

  8. S. Lineykin and S. Ben-Yaakov, IEEE Trans. Ind. Appl. 43, 505 (2007).

    Article  CAS  Google Scholar 

  9. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Google Scholar 

  10. C.M. Bhandari, Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 27.

    Google Scholar 

  11. C.H. Cheng, S.Y. Huang, and T.C. Cheng, Int. J. Heat Mass Transf. 53, 2001 (2010).

    Article  CAS  Google Scholar 

  12. M. Chen, L.A. Rosendhal, and T. Condra, Int. J. Heat Mass Transf. 54, 345 (2011).

    Article  Google Scholar 

  13. L.I. Anatychuk and R.R. Kobylyansky, J. Electron. Mater. 39, 1704 (2010).

    Article  CAS  Google Scholar 

  14. J. Garrido, J. Phys. Chem. B 106, 10722 (2002).

    Article  CAS  Google Scholar 

  15. J. Garrido, J. Phys. Chem. B 108, 18336 (2004).

    Article  CAS  Google Scholar 

  16. Ferrotec Corporation, Thermolectric Technical Refrence Guide, www.ferrotec.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Garrido.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrido, J., Casanovas, A. New Method for Evaluating the Peltier Coefficient Based on Temperature Measurements in a Thermoelectric Module. J. Electron. Mater. 41, 1990–1995 (2012). https://doi.org/10.1007/s11664-012-1966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1966-0

Keywords

Navigation