Skip to main content
Log in

Electrical Resistance and Seebeck Coefficient in PbTe Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We address a physics-based simplified analytical formulation of the diffusive electrical resistance (R Ω) and Seebeck coefficient (S) in a PbTe nanowire dominated by acoustic phonon scattering under the presence of a low static longitudinal electric field. The use of a second-order nonparabolic electron energy band structure involving a geometry-dependent band gap has been selected in principle to demonstrate that the electron mean free path (MFP) in such a system can reach as low as about 8 nm at room temperature for a 10-nm-wide PbTe nanowire. This is followed by the formulation of the carrier back-scattering coefficient for determination of R Ω and S as functions of wire dimensions, temperature, and the field, respectively. The present analytical formulation agrees well with the available experimental data and may find extensive use in determination of various electrothermal transport phenomena in PbTe-based one-dimensional electron devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Technology Roadmap for Semiconductors, Available Online at http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ERD.pdf, accessed 4 February 2012.

  2. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  Google Scholar 

  3. Y.M. Zuev, W. Chang, and P. Kim, Phys. Rev. Lett. 102, 096807 (2009).

    Article  Google Scholar 

  4. C. Yu, L. Shi, Z. Yao, D. Li, and A. Majumdar, Nano Lett. 5, 1842 (2005).

    Article  CAS  Google Scholar 

  5. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  CAS  Google Scholar 

  6. T.M. Tritt, Recent Trends in Thermoelectric Materials Research III, Vol. 71 and the references cited inside (San Diego, CA: Academic Press, 2001).

  7. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  8. S. Ahmad, K. Hoang, and S.D. Mahanti, Phys. Rev. Lett. 96, 056403 (2006).

    Article  Google Scholar 

  9. E.O. Kane, Semiconductors and Semimetals, Vol. 1 (New York: Academic, 1975).

    Google Scholar 

  10. J.P. Heremans, C.M. Thrush, and D.T. Morelli, Phys. Rev. B 70, 115334 (2004).

    Article  Google Scholar 

  11. D.M. Zayachuk, Semiconductors 71, 173 (1997).

    Article  Google Scholar 

  12. J.P. McKelvey, R.L. Longini, and T.P. Brody, Phys. Rev. 123, 51 (1961).

    Article  CAS  Google Scholar 

  13. R. Kimand and M. Lundstrom, IEEE. Trans. Electron. Dev. 56, 132 (2009).

    Article  Google Scholar 

  14. R.K. Pathria, Statistical Mechanics (Saint Louis, MS: Butterworth-Heinemann, 2006).

    Google Scholar 

  15. N.F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (New York: Dover, 1958).

    Google Scholar 

  16. N. Neophytou, A. Paul, M.S. Lundstrom, and G. Klimeck, IEEE Trans. Electron Devices 55, 866 (2008).

    Article  Google Scholar 

  17. M. Bukała, M. Galicka, R. Buczko, and P. Kacman, Physica E 42, 795 (2010).

    Article  Google Scholar 

  18. J.-A. Yan, L. Yang, and M.Y. Chou, Phys. Rev. B 76, 115319 (2007).

    Article  Google Scholar 

  19. D. Yao, G. Zhang, and B. Li, Nano Lett. 8, 4557 (2008).

    Article  CAS  Google Scholar 

  20. J. Wang, A. Rahman, A. Ghosh, G. Klimeck, and M.S. Lundstrom, IEEE Trans. Electron Devices 52, 1589 (2005).

    Article  Google Scholar 

  21. O. Madelung, Semiconductors: Data Handbook (New York: Springer, 2004).

    Book  Google Scholar 

  22. Th. Maltezopoulos, A. Kubetzka, M. Morgenstern, R. Wiesendanger, S.G. Lemay, and C. Dekker, Appl. Phys. Lett. 83, 1011 (2003).

    Article  CAS  Google Scholar 

  23. R. Heyd, A. Charlier, and E. McRae, Phys. Rev. B 55, 6820 (1997).

    Article  CAS  Google Scholar 

  24. R. Landauer, Philos. Mag. 21, 863 (1970).

    Article  CAS  Google Scholar 

  25. H. Jung, D.-Y. Park, F. Xiao, K.H. Lee, Y.-H. Choa, B. Yoo, and N.V. Myung, J. Phys. Chem C 115, 2993 (2011).

    Article  CAS  Google Scholar 

  26. Y. Yang, D.K. Taggart, M.H. Cheng, J.C. Hemminger, and R.M. Penner, J. Phys. Chem. Lett. 1, 3004 (2010).

    Article  CAS  Google Scholar 

  27. Q. Yan, H. Chen, W. Zhou, H.H. Hng, F.Y.C. Boey, and J. Ma, Chem. Mater. 20, 6298 (2008).

    Article  CAS  Google Scholar 

  28. S. Bhattacharya, C. Raju, and R.C. Mallik, AIP Conf. Proc. 1349, 949 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the Department of Science and Technology (DST), India under Grant No. SR/FTP/ETA-37/08 and SR/ITS/00427/2010–2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Mallik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Mallik, R.C. Electrical Resistance and Seebeck Coefficient in PbTe Nanowires. J. Electron. Mater. 41, 1421–1428 (2012). https://doi.org/10.1007/s11664-012-1930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1930-z

Keywords

Navigation