Skip to main content
Log in

Ab Initio Studies of the Unreconstructed Polar CdTe (111) Surface

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ab initio electronic structure calculations were carried out for bulk cadmium telluride (CdTe) and the unreconstructed CdTe polar (111) Cd-terminated and (\( \bar{1}\bar{1}\bar{1} \)) Te-terminated surfaces. The hybrid functional for the exchange and correlation potential improves the overall description of the electronic structure of bulk CdTe, by lowering Cd 4d states and hence reducing the Cd 4d–Te 5p hybridization. The Cd–Te interlayer distance of the Cd-terminated surface exhibits a dramatic contraction in contrast with the expansion of the Te-terminated surface, and the surface relaxations decrease as the slab thickness increases. The underlying mechanism of the convergence of the electrostatic potential energy, work function, and electric dipole moment of the polar surfaces as a function of slab thickness is surface electron rearrangement leading to charge transfer from the Te- to the Cd-terminated surfaces. The surface electric polarization induces an internal electric field in the slab, which in turn tilts the bands of the slab double layers, thus rendering the surface layers metallic. The electric field decreases with increasing slab thickness due to convergence of the difference of electrostatic potentials between the Cd- and Te-terminated surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Zanio, Cadmium Telluride, Semiconductors and Semimetals, Vol. 13 (New York: Academic Press, 1978).

    Google Scholar 

  2. R. Triboulet, Y. Marfaing, A. Cornet, and P. Siffert, J. Appl. Phys. 45, 2759 (1974).

    Article  CAS  Google Scholar 

  3. C. Szeles, Phys. Status Solidi B 241, 783 (2004).

    Article  CAS  Google Scholar 

  4. T.E. Schlesinger, J.E. Toney, H. Yoon, E.Y. Lee, B.A. Brunett, L. Franks, and R.B. James, Mater. Sci. Eng. R 32, 103 (2001).

    Article  Google Scholar 

  5. Y.S. Wu, C.R. Becker, A. Waag, K. von Schierstedt, R.N. Ricknell-Tassius, and G. Landwehr, Appl. Phys. Lett. 62, 1510 (1993).

    Article  CAS  Google Scholar 

  6. J. Gordon, P. Morgen, H. Shechter, and M. Folman, Phys. Rev. B 42, 1852 (1995).

    Article  Google Scholar 

  7. B.J. Kowalski, B.A. Orłowski, and J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000).

    Article  CAS  Google Scholar 

  8. G.Q. Zha, W.Q. Jie, T.T. Tan, P.S. Li, W.H. Zhang, and F.Q. Xu, Chem. Phys. Lett. 427, 197 (2006).

    Article  CAS  Google Scholar 

  9. C. Hsu, S. Sivananthan, X. Chu, and J.P. Faurie, Appl. Phys. Lett. 48, 908 (1986).

    Article  CAS  Google Scholar 

  10. Y.S. Wu, C.R. Becker, A. Waag, M.M. Kraus, R.N. Bicknell-Tassius, and G. Landwehr, Phys. Rev. B 44, 8904 (1991).

    Article  CAS  Google Scholar 

  11. C.K. Egan, Q.Z. Jiang, and A.W. Brinkman, J. Vac. Sci. Technol. A 29, 011021 (2011).

    Article  Google Scholar 

  12. R. Duszak, S. Tatarenko, J. Cibert, K. Saminadayar, and C. Deshayer, J. Vac. Sci. Technol. A 9, 3025 (1991).

    Article  CAS  Google Scholar 

  13. R. Duszak, S. Tatarenko, J. Cibert, N. Magnéa, H. Mariette, and K. Saminadayar, Surf. Sci. 251/252, 511 (1991).

    Article  Google Scholar 

  14. S. Tatarenko, B. Daudin, D. Brun, V.H. Etgens, and M.B. Veron, Phys. Rev. B 50, 18479 (1994).

    Article  CAS  Google Scholar 

  15. S. Rujirawat, Y. Xin, N.D. Browning, S. Sivananthan, D.J. Smith, S.-C.Y. Tsen, and Y.P. Chen, Appl. Phys. Lett. 74, 2346 (1999).

    Article  CAS  Google Scholar 

  16. G.Q. Zha, W.Q. Jie, T.T. Tan, X.X. Bai, L. Fu, W.H. Zhang, and F.Q. Xu, J. Mater. Res. 24, 1639 (2009).

    Article  CAS  Google Scholar 

  17. A.E. Merad, M.B. Kanoun, G. Merad, J. Cibert, and H. Aourag, Mater. Chem. Phys. 92, 333 (2005).

    Article  CAS  Google Scholar 

  18. J. Heyd, J.E. Peralta, G.E. Scuseria, and R.L. Martin, J. Chem. Phys. 123, 174101 (2005).

    Article  Google Scholar 

  19. J.H. Yang, S.Y. Chen, W.J. Yin, X.G. Gong, A. Walsh, and S.H. Wei, Phys. Rev. B 79, 245202 (2009).

    Article  Google Scholar 

  20. A. Carvalho, A.K. Tagantsev, S. Öberg, P.R. Briddon, and N. Setter, Phys. Rev. B 81, 075215 (2010).

    Article  Google Scholar 

  21. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  22. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  23. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  24. G. Kresse and J. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  25. D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  CAS  Google Scholar 

  26. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  CAS  Google Scholar 

  27. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  28. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

    Article  CAS  Google Scholar 

  29. J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006).

    Article  Google Scholar 

  30. J. Paier, R. Hirschl, M. Marsman, and G. Kresse, J. Chem. Phys. 112, 234102 (2005).

    Article  Google Scholar 

  31. A.V. Krukau, O.A. Vydrov, A.F. Izmaylov, and G.E. Scuseria, J. Chem. Phys. 125, 224106 (2006).

    Article  Google Scholar 

  32. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  33. O. Madelung (ed.), Numerical Data and Functional Relationships in Science and Technology, Vol. 17, Parts a and b, 1982; Vol. 22, Part a, 1987, Landolt-B\”{o}rnstein, New Series, Group III (Berlin: Springer-Verlag).

  34. R. Triboulet and P. Siffert, CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-structures, Crystal Growth, Surfaces and Applications (Cambridge, UK: Cambridge University Press, 1998).

    Google Scholar 

  35. D.J. Chadi, J.P. Walter, and M.L. Cohen, Phys. Rev. B 5, 3058 (1972).

    Article  Google Scholar 

  36. D.T.F. Marple and H. Ehrenreich, Phys. Rev. Lett. 8, 87 (1962).

    Article  CAS  Google Scholar 

  37. S.H. Wei and A. Zunger, Phys. Rev. B 37, 8958 (1988).

    Article  CAS  Google Scholar 

  38. O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, and S.G. Louie, Phys. Rev. B 50, 10780 (1994).

    Article  CAS  Google Scholar 

  39. X.F. Wu, E.J. Walter, A.M. Rappe, R. Car, and A. Selloni, Phys. Rev. B 80, 115201 (2009).

    Article  Google Scholar 

  40. M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett. 55, 1418 (1985).

    Article  CAS  Google Scholar 

  41. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).

    Article  CAS  Google Scholar 

  42. T.H. Myers, J.F. Schetzina, T.J. Magee, and R.B. Ormond, J. Vac. Sci. Technol. A 1, 1598 (1983).

    Article  CAS  Google Scholar 

  43. P.W. Tasker, J. Phys. C 12, 4977 (1979).

    Article  CAS  Google Scholar 

  44. B. Meyer and D. Marx, Phys. Rev. B 67, 035403 (2003).

    Article  Google Scholar 

  45. J.H. Song, T. Akiyama, and A.J. Freeman, Phys. Rev. B 77, 035332 (2008).

    Article  Google Scholar 

  46. P. Kempisty, S. Krukowski, P. Strak, and K. Sakowski, J. Appl. Phys. 106, 054901 (2009).

    Article  Google Scholar 

  47. G.Q. Zha, W.Q. Jie, X.X. Bai, T. Wang, L. Fu, W.H. Zhang, J.F. Zhu, and F.Q. Xu, J. Appl. Phys. 106, 053714 (2009).

    Article  Google Scholar 

  48. M.H. Tsai and S.K. Dey, Eur. Phys. J. Appl. Phys. 36, 125 (2006).

    Article  CAS  Google Scholar 

  49. J. Soltys, J. Piechota, M. Łopuszyński, and S. Krukowsik, New J. Phys. 12, 043024 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Gayles, J., Kioussis, N. et al. Ab Initio Studies of the Unreconstructed Polar CdTe (111) Surface. J. Electron. Mater. 41, 2745–2753 (2012). https://doi.org/10.1007/s11664-012-1924-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-1924-x

Keywords

Navigation