Skip to main content

Near-Infrared Absorption in Lattice-Matched AlInN/GaN and Strained AlGaN/GaN Heterostructures Grown by MBE on Low-Defect GaN Substrates

Abstract

We have investigated near-infrared absorption and photocurrent in lattice-matched AlInN/GaN and strained AlGaN/GaN heterostructures grown by molecular-beam epitaxy (MBE) on low-defect GaN substrates for infrared device applications. The AlGaN/GaN heterostructures were grown under Ga-rich conditions at 745°C. Material characterization via atomic force microscopy and high-resolution x-ray diffraction indicates that the AlGaN/GaN heterostructures have smooth and well-defined interfaces. A minimum full-width at half-maximum of 92 meV was obtained for the width of the intersubband absorption peak at 675 meV of a 13.7 Å GaN/27.5 Å Al0.47Ga0.53N superlattice. The variation of the intersubband absorption energy across a 1 cm × 1 cm wafer was ±1%. An AlGaN/GaN-based electromodulated absorption device and a quantum well infrared detector were also fabricated. Using electromodulated absorption spectroscopy, the full-width at half-maximum of the absorption peak was reduced by 33% compared with the direct absorption measurement. This demonstrates the suitability of the electromodulated absorption technique for determining the intrinsic width of intersubband transitions. The detector displayed a peak responsivity of 195 μA/W at 614 meV (2.02 μm) without bias. Optimal MBE growth conditions for lattice-matched AlInN on low-defect GaN substrates were also studied as a function of total metal flux and growth temperature. A maximum growth rate of 3.8 nm/min was achieved while maintaining a high level of material quality. Intersubband absorption in AlInN/GaN superlattices was observed at 430 meV with full-width at half-maximum of 142 meV. Theoretical calculations of the intersubband absorption energies were found to be in agreement with the experimental results for both AlGaN/GaN and AlInN/GaN heterostructures.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. Gmachl, H.M. Ng, and A.Y. Cho, Appl. Phys. Lett. 77, 334 (2000).

    Article  CAS  Google Scholar 

  2. 2.

    C. Gmachl, H.M. Ng, and A.Y. Cho, Appl. Phys. Lett. 79, 1590 (2001).

    Article  CAS  Google Scholar 

  3. 3.

    C. Gmachl and H.M. Ng, Electron. Lett. 39, 567 (2003).

    Article  CAS  Google Scholar 

  4. 4.

    M. Tchernycheva, L. Nevou, L. Vivien, F.H. Julien, P.K. Kandaswamy, E. Monroy, and A. Vardi, Phys. Status Solidi B 247, 1622 (2010).

    Article  CAS  Google Scholar 

  5. 5.

    O. Malis, C. Edmunds, M.J. Manfra, and D.L. Sivco, Appl. Phys. Lett. 94, 161111 (2009).

    Article  Google Scholar 

  6. 6.

    O. Malis, C. Edmunds, D. Li, and M.J. Manfra, 18th Biennial University/Government/Industry Micro-Nano Symposium “Intersubband transitions in lattice-matched AlInN/GaN Heterostructures” (2010).

  7. 7.

    G. Sun, J. Lumin. 119–120, 528 (2006).

    Article  Google Scholar 

  8. 8.

    H. Machhadani, Y. Kotsar, S. Sakr, M. Tchernycheva, R. Colombelli, J. Mangeney, E. Bellet-Amalric, E. Sarigiannidou, E. Monroy, and F.H. Julien, Appl. Phys. Lett. 97, 191101 (2010).

    Article  Google Scholar 

  9. 9.

    E. Bellotti, K. Driscoll, T.D. Moustakas, and R. Paiella, Appl. Phys. Lett. 92, 101112 (2008).

    Article  Google Scholar 

  10. 10.

    E. Bellotti, K. Driscoll, T.D. Moustakas, and R. Paiella, J. Appl. Phys. 105, 113103 (2009).

    Article  Google Scholar 

  11. 11.

    R.J. Molnar, W. Götz, L.T. Romano, and N.M. Johnson, J. Cryst. Growth 178, 147 (1997).

    Article  CAS  Google Scholar 

  12. 12.

    T. Paskova, D.A. Hanser, and K.R. Evans, Proc. IEEE 89, 1324 (2010).

    Article  Google Scholar 

  13. 13.

    S. Schmult, T. Siegrist, A.M. Sergent, M.J. Manfra, and R.J. Molnar, Appl. Phys. Lett. 90, 021922 (2007).

    Article  Google Scholar 

  14. 14.

    S. Nicolay, J.-F. Carlin, E. Feltin, R. Butté, M. Mosca, N. Grandjean, M. Ilegems, M. Tchernycheva, L. Nevou, and F.H. Julien, Appl. Phys. Lett. 87, 111106 (2005).

    Article  Google Scholar 

  15. 15.

    G. Snider, D Poisson Program. University of Notre Dame. http://www.nd.edu/~demand.

  16. 16.

    J. Wu, J. Appl. Phys. 106, 011101 (2009).

    Article  Google Scholar 

  17. 17.

    P.G. Moses, M. Miao, Q. Yan, and C.G. Van de Walle, J. Chem. Phys. 134, 084703 (2011).

    Article  Google Scholar 

  18. 18.

    E. Baumann, F.R. Giorgetta, D. Hofstetter, S. Leconte, F. Guillot, E. Bellet-Amalric, and E. Monroy, Appl. Phys. Lett. 89, 101 (2006).

    Google Scholar 

  19. 19.

    D. Hofstetter, Sven-Silvius Schad, H. Wu, W.J. Schaff, and L.F. Eastma, Appl. Phys. Lett. 82, 572 (2003).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Edmunds.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Edmunds, C., Tang, L., Li, D. et al. Near-Infrared Absorption in Lattice-Matched AlInN/GaN and Strained AlGaN/GaN Heterostructures Grown by MBE on Low-Defect GaN Substrates. Journal of Elec Materi 41, 881–886 (2012). https://doi.org/10.1007/s11664-011-1881-9

Download citation

Keywords

  • Intersubband absorption
  • near infrared
  • quantum well infrared photodetector
  • electromodulation
  • III-nitride semiconductors
  • molecular-beam epitaxy