Skip to main content
Log in

Development of a Measurement Method for the Thermal Conductivity of a Thick Film Prepared by a Screen-Printing Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We propose a method that allows us to evaluate the thermal conductivity of a conductive material that has thickness on the order of microns. The key feature of the proposed method is use of a complete thermoelectric device with electrodes and a substrate, while conventional methods measure the temperature gradient of thermoelectric materials directly without electrodes. The measured thermal conductivity of a ZnSb film annealed at 380°C in N2 ambient for 16 min to 26 min is 1.2 W/m K to 1.4 W/m K. The measurement shows that thermoelectric film prepared by a screen-printing technique has lower thermal conductivity than bulk material (2.2 W/m K to 2.4 W/m K) because the screen-printing technique generates high porosity in the film. The lower measured thermal conductivity of the porous films compared with bulk material supports the reliability of the proposed measurement method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G.J. Snyder, Science 321, 554 (2008).

    Article  CAS  Google Scholar 

  3. D.M. Rowe and G. Min, J. Power Sources 73, 193 (1998).

    Article  CAS  Google Scholar 

  4. J.P. Fleurial, G.J. Snyder, J.A. Herman, P.H. Giauque, W.M. Phillips, M.A. Ryan, P. Shakkottai, E.A. Kolawa, and M.A. Nicolet, Proc. ICT’99 (1999), p. 294.

  5. W. Shin, K. Imai, N. Izu, and N. Murayama, Jpn. J. Appl. Phys. 40, 1232 (2001).

    Article  Google Scholar 

  6. H.-B. Lee, H.J. Yang, J.H. We, K. Kim, K.C. Choi, and B.J. Cho, J. Electron. Mater. 40, 615 (2001).

    Article  Google Scholar 

  7. T.C. Harman, J. Appl. Phys. 29, 1373 (1958).

    Article  CAS  Google Scholar 

  8. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, J. Appl. Phys. 32, 1679 (1961).

    Article  CAS  Google Scholar 

  9. K.E. Goodson, O.W. Kading, M. Rosler, and R. Zachai, J. Appl. Phys. 77, 1385 (1995).

    Article  CAS  Google Scholar 

  10. D.G. Cahill and R.O. Pohl, Phys. Rev. B: Condens. Matter. 35, 4067 (1987).

    Article  CAS  Google Scholar 

  11. R.E. Trease and R.L. Dietz, Solid-State Technol. 15, 39 (1972).

    Article  CAS  Google Scholar 

  12. L.F. Miller, Solid-State Technol. 17, 54 (1974).

    Google Scholar 

  13. L.T. Zhang, M. Tsutsui, K. Ito, and M. Yamaguchi, J. Alloys Compd. 358, 252 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung Jin Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

We, J.H., Lee, H.B., Gim, S.J. et al. Development of a Measurement Method for the Thermal Conductivity of a Thick Film Prepared by a Screen-Printing Technique. J. Electron. Mater. 41, 1170–1176 (2012). https://doi.org/10.1007/s11664-011-1857-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1857-9

Keywords

Navigation