Journal of Electronic Materials

, Volume 41, Issue 6, pp 1606–1614 | Cite as

Influence of Thermal Aging Phenomena on Thermoelectric Properties of Al-Substituted ZnO

  • Nina Vogel-Schäuble
  • Raphaël Dujardin
  • Anke WeidenkaffEmail author
  • Myriam H. Aguirre


The thermoelectric properties and stability of Al-substituted ZnO as a potential high-temperature n-type material were studied in heating–cooling cycles. Zn1−x Al x O (x = 0.02, 0.06) was prepared by soft chemistry and solid-state reaction synthesis methods. Cycling during the thermoelectric measurement leads to an increase of the electrical resistivity and Seebeck coefficient values. The reason for this aging phenomenon can be assigned to a change in composition due to oxygen uptake along with modification in the defect concentrations. The aging is enhanced if the cycling is performed in oxygen. ZT value of 0.21 is reached at 1275 K for samples with 2% Al substitution made by soft chemistry synthesis.


Thermoelectric properties Al-substituted ZnO soft chemistry thermal cycling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2011_1851_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1339 kb)


  1. 1.
    H. Scherrer, Thermoelectrics Handbook, ed. D.M. Rowe (CRC Press, 2006), p. 27–14.Google Scholar
  2. 2.
    K. Koumoto, Thermoelectrics Handbook, ed. D.M. Rowe (CRC Press, 2006), p. 35–1.Google Scholar
  3. 3.
    T. Tsubota, M. Ohtaki, K. Eguchi, and H. Arai, J. Mater. Chem. 7, 1 (1997).CrossRefGoogle Scholar
  4. 4.
    G. Heiland and E. Mollwo, Solid State Phys. 8, 191 (1959).CrossRefGoogle Scholar
  5. 5.
    D. Bérardan, C. Byl, and N. Dragoe, J. Am. Ceram. Soc. 93, 2352 (2010).CrossRefGoogle Scholar
  6. 6.
    K.H. Kim, S.H. Shim, K.B. Shim, K. Niihara, and J. Hojo, J. Am. Ceram. Soc. 88, 628 (2005).CrossRefGoogle Scholar
  7. 7.
    N. Ma, J.-F. Li, B.P. Zhang, Y.H. Lin, L.R. Ren, and G.F. Chen, J. Phys. Chem. Solids 71, 1344 (2010).CrossRefGoogle Scholar
  8. 8.
    E. Guilmeau, A. Maignan, and C. Martin, J. Electron. Mater. 38, 1104 (2009).CrossRefGoogle Scholar
  9. 9.
    M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).CrossRefGoogle Scholar
  10. 10.
    H. Cheng, X.J. Xu, H.H. Hng, and J. Ma, Ceram. Int. 35, 3067 (2009).CrossRefGoogle Scholar
  11. 11.
    K. Park, K.Y. Ko, W.-S. Seo, W.-S. Cho, J.-G. Kim, and J.Y. Kim, J. Eur. Ceram. Soc. 27, 813 (2007).CrossRefGoogle Scholar
  12. 12.
    K.F. Cai, E. Müller, C. Drasar, and A. Mrotzek, Mater. Sci. Eng. B 104, 45 (2003).CrossRefGoogle Scholar
  13. 13.
    S. Katsuyama, Y. Takagi, M. Ito, K. Majima, H. Nagai, H. Sakai, K. Yoshimura, and K. Kosuge, J. Appl. Phys. 92, 1391 (2002).CrossRefGoogle Scholar
  14. 14.
    Y. Tanaka, T. Ifuku, K. Tsuchida, and A. Kato, J. Mater. Sci. Lett. 16, 155 (1997).CrossRefGoogle Scholar
  15. 15.
    K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, and J. Hojo, J. Ceram. Soc. Jpn. 115, 254 (2007).CrossRefGoogle Scholar
  16. 16.
    K. Shirouzu, T. Kawamoto, N. Enomoto, and J. Hojo, Jpn. J. Appl. Phys. 49, 010201 (2010).CrossRefGoogle Scholar
  17. 17.
    J.P. Wiff, Y. Kinemuchi, H. Kaga, C. Ito, and K. Watari, J. Eur. Ceram. Soc. 29, 1413 (2009).CrossRefGoogle Scholar
  18. 18.
    W.-S. Hong and L.C. De Jonghe, J. Am. Ceram. Soc. 78, 3217 (1995).CrossRefGoogle Scholar
  19. 19.
    A. Weidenkaff, Adv. Eng. Mater. 6, 709 (2004).CrossRefGoogle Scholar
  20. 20.
    L. Bocher, M.H. Aguirre, D. Logvinovich, A. Shkabko, R. Robert, M. Trottmann, and A. Weidenkaff, Inorg. Chem. 47, 8077 (2008).CrossRefGoogle Scholar
  21. 21.
    A. Weidenkaff, A.W. Reller, A. Wokaun, and A. Steinfeld, Thermochim. Acta 359, 69 (2000).CrossRefGoogle Scholar
  22. 22.
    Y. Kinemuchi, C. Ito, H. Kaga, T. Aoki, and K. Watari, J. Mater. Res. 22, 1942 (2007).CrossRefGoogle Scholar
  23. 23.
    R. Robert, S. Romer, A. Reller, and A. Weidenkaff, Adv. Eng. Mater. 7, 303 (2005).CrossRefGoogle Scholar
  24. 24.
    A. Petric and H. Ling, J. Am. Ceram. Soc. 90, 1515 (2007).CrossRefGoogle Scholar
  25. 25.
    A.F. Holleman, E. Wiberg, and N. Wiberg, Lehrbuch der Anorganischen Chemie, 102nd ed. (Berlin: Walter de Gruyter, 2007), p. 1492.CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Nina Vogel-Schäuble
    • 1
  • Raphaël Dujardin
    • 1
  • Anke Weidenkaff
    • 1
    Email author
  • Myriam H. Aguirre
    • 1
  1. 1.Laboratory of Solid State Chemistry and Catalysis, EmpaSwiss Federal Laboratories for Materials Science and TechnologyDuebendorfSwitzerland

Personalised recommendations