Skip to main content
Log in

Trend for Thermoelectric Materials and Their Earth Abundance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The low crustal abundance of materials such as tellurium (Te) (0.001 ppm by weight), antimony (Sb) (0.2 ppm), and germanium (Ge) (1.4 ppm) contributes to their price volatility as applications (competing with thermoelectrics) continue to grow, for example, cadmium telluride photovoltaics, antimony-lead alloy for batteries, and Ge for fiber optics and infrared optical technologies. Previous consideration of material scarcity has focused on Te-based thermoelectrics. Here, we broaden the analysis to include recent high-figure-of-merit (ZT) materials such as skutterudites, Zintl phase compounds, and clathrates that employ Sb, ytterbium (2.8 ppm), and Ge. The maximum demonstrated ZT for each particular alloy exhibits an empirical dependence on the crustal abundance, A, such that ZT = A b, where b is in the range from 0.05 to 0.10. This analysis shows that no material with crustal abundance of 30 ppm (~4 × 1018 metric tons) has ZT greater than 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).

    Book  Google Scholar 

  2. A. Majumdar, Science 303, 777 (2004).

    Article  CAS  Google Scholar 

  3. D.M. Rowe, Appl. Energy 40, 241 (1991).

    Article  CAS  Google Scholar 

  4. J.W. Vandersande, J.-P. Fleurial, 15 th International Conference on Thermoelectrics, Pasadena, USA (1996).

  5. D.T. Morelli, 15 th International Conference on Thermoelectrics, Pasadena, USA (1996).

  6. J. LaGrandeur, D. Crane, S. Hung, B. Mazar, A. Eder, 25 th International Conference on Thermoelectrics, Vienna, Austria (2006).

  7. D.M. Rowe, Int. J. Innov. Energy Syst. Power 1, 13 (2006).

    Google Scholar 

  8. R. Amatya and R.J. Ram, J. Electron. Mater. 39, 1735 (2010).

    Article  CAS  Google Scholar 

  9. D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, and G. Chen, Nat. Mater. 10, 532 (2011).

    Article  CAS  Google Scholar 

  10. Abundance in Earth’s Crust. WebElements.com. (The University of Sheffield and WebElements Ltd., 1993–2010) http://www.webelements.com. Accessed 25 January 2011.

  11. J. Sharp, Invited Talk, 28 th International Conference on Thermoelectrics, Freiburg, Germany (2009).

  12. H.R. Meddins and J.E. Parrott, J. Phys. C 9, 1263 (1976).

    Article  CAS  Google Scholar 

  13. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  14. S.H. Yang, T.J. Zhu, T. Sun, J. He, S.N. Zhang, and X.B. Zhao, Nanotechnology 19, 245707 (2008).

    Article  CAS  Google Scholar 

  15. S.Q. Bai, X.Y. Huang, L.D. Chen, W. Zhang, X.Y. Zhao, and Y.F. Zhou, Appl. Phys. A 100, 1109 (2010).

    Article  CAS  Google Scholar 

  16. B.C. Sales, D. Mandrus, and R.K. Williams, Science 272, 1325 (1996).

    Article  CAS  Google Scholar 

  17. A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G. Williams, D.M. Rove, J.D. Bryan, and G.D. Stucky, J. Appl. Phys. 99, 023708 (2006).

    Article  Google Scholar 

  18. H. Kleinke, Chem. Mater. 22, 604 (2010).

    Article  CAS  Google Scholar 

  19. S.R. Brown, S.M. Kauzlarich, F. Gascoin, and G.J. Snyder, Chem. Mater. 18, 1873 (2006).

    Article  CAS  Google Scholar 

  20. T. Caillat, J.-P. Fleurial, and A. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  CAS  Google Scholar 

  21. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  22. H. Muta, T. Yamaguchi, K. Kurosaki, S. Yamanaka, 24 th International Conference on Thermoelectrics, South Carolina, USA (2005).

  23. Q. Shen, L. Chen, T. Goto, T. Hirai, J. Yang, G.P. Meisner, and C. Uher, Appl. Phys. Lett. 79, 4165 (2001).

    Article  CAS  Google Scholar 

  24. K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001).

    Article  CAS  Google Scholar 

  25. K. Koumoto, I. Terasaki, and R. Funahashi, MRS Bull. 31, 206 (2006).

    Article  CAS  Google Scholar 

  26. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  27. J. Baxter, Z. Bian, G. Chen, D. Danielson, M.S. Dresselhaus, A.G. Fedorov, T.S. Fisher, C.W. Jones, E. Maginn, U. Kortshagen, A. Manthiram, A. Nozik, D.R. Rolison, T. Sands, L. Shi, D. Sholl, and Y. Wu, Energy Environ. Sci. 2, 559 (2009).

    Article  CAS  Google Scholar 

  28. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  CAS  Google Scholar 

  29. Y. Lan, A.J. Minnich, G. Chen, and Z. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  CAS  Google Scholar 

  30. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  Google Scholar 

  31. D.D. Clayton, W.A. Fowler, T.E. Hull, and B.A. Zimmerman, Ann. Phys. (N.Y.) 12, 331 (1961).

    Article  CAS  Google Scholar 

  32. H. Palme and A. Jones, Solar System Abundances of the Elements: Treatise on Geochemistry, Vol. 1 (Oxford: Elsevier, 2003), pp. 41–61.

    Google Scholar 

  33. K. Lodders, Astrophys. J. 591, 1220 (2003).

    Article  CAS  Google Scholar 

  34. G.B. Haxel, S. Boore, S. Mayfield, J.B. Hedrick, G.J. Orris, Relative Abundance of Elements in the Earth’s Upper Crust (USGS, 2003), http://pubs.usgs.gov/fs/2002/fs087-02/. Accessed 4 March 2011.

  35. J.G. Price, The world is changing. Soc. Econ. Geol. Newsl. 82 (2010).

  36. S.E. Kesler, Mineral Resources, Economics and the Environment (New York: Macmillan College, 1994).

    Google Scholar 

  37. C. Magee, Lounge of the Lab Lemmin (2008), http://lablemminglounge.blogspot.com/2008/03/economic-geology-from-first-principles.html. Accessed 5 March 2011.

  38. E. Muller, Thermoelectric Materials: Maturity for Technological Application (Short survey) (Koln-Porz: German Aerospace Center (DLR), 2009).

  39. L.I. Berger, Semiconductor Materials (Boca Raton: CRC, 1977), pp. 89–91.

    Google Scholar 

  40. H.E. Suess and H.C. Urey, Rev. Mod. Phys. 28, 53 (1956).

    Article  CAS  Google Scholar 

  41. L.-G. Liu, Geochem. J. 16, 287 (1982).

    Article  CAS  Google Scholar 

  42. R. Jaffe, J. Price, G. Ceder, R. Eggert, T. Graedel, K. Gschneidner, M. Hitzman, F. Houle, A. Hurd, R. Kelley, A. King, D. Milliron, B. Skinner, and F. Slakey, APS Physics (Cambridge, USA: MRS, 2010).

    Google Scholar 

  43. H.S. Ullal and B. von Roedern, Thin film CIGS and CdTe Photovoltaic Technologies: 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, (2007).

  44. R.S. Williams, Principles of Metallography (New York: McGraw-Hill Book, 2007).

    Google Scholar 

  45. N.C. Norman, Chemistry of Arsenic, Antimony and Bismuth (Berlin: Springer, 1998).

    Google Scholar 

  46. K.R. Long, B.S. Van Gosen, N.K. Foley, D. Cordier, U.S. Geological Survey Scientific Reports 2010-5220, Virginia (2010).

  47. L.R. Bernstein, Geochim. Cosmochim. Acta 49, 2409 (1985).

    Article  CAS  Google Scholar 

  48. G.S. Nolas, D.T. Morelli, and T.M. Tritt, Ann. Rev. Mater. Sci. 29, 89 (1999).

    Article  CAS  Google Scholar 

  49. M.S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. Muller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Adv. Funct. Mater. 14, 1189 (2004).

    Article  CAS  Google Scholar 

  50. J.O. Sofo and G.D. Mahan, Phys. Rev. B 58, 15620 (1998).

    Article  CAS  Google Scholar 

  51. A. Sakai, F. Ishii, Y. Onose, Y. Tomioko, S. Yotsuhashi, H. Adachi, N. Nagaosa, Y. Tokura, J. Phys. Soc. Jpn. 76, 093601 (2007).

    Google Scholar 

  52. D.J. Singh, I.I. Mazin, Phys. Rev. B 56, 1650 (1997).

    Google Scholar 

  53. J.B. Goodenough, Phys. Rev. 120, 67 (1960).

    Article  CAS  Google Scholar 

  54. D. van der Parel, A. Damascelli, K. Schulte, A.A. Menovsky, Physica B 244, 138 (1998).

    Google Scholar 

  55. J.-F. Li, W.-S. Liu, L.-D. Zhao, and M. Zhou, NPG Asia Mater. 2, 152 (2010).

    Article  Google Scholar 

  56. G.S. Nolas, M. Kaeser, R.T. Littleton, and T.M. Tritt, Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  57. X. Shi, H. Kong, C.-P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  58. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, L.D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Google Scholar 

  59. L. Zhang, A. Grytsiv, M. Kerber, P. Rogl, E. Bauer, and M. Zehetbauer, J. Alloy. Compd. 490, 19 (2010).

    Article  CAS  Google Scholar 

  60. S. Ballikaya, G. Wang, K. Sun, C. Uher, J. Electron. Mater. 40, 570 (2011)

    Google Scholar 

  61. G.S. Nolas, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC, 2006), p. 33-1.

    Google Scholar 

  62. V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000).

    Article  CAS  Google Scholar 

  63. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  64. S.M. Kauzlarich, S.R. Brown, G.J. Snyder, R. Soc. Chem. Dalton Trans. 21, 2099 (2007).

    Google Scholar 

  65. B. Saparov, H. He, X. Zhang, R. Greene, S. Bobev, R. Soc. Chem. Dalton Trans. 39 (2009).

  66. F. Gascoin, S. Ottensmann, D. Stark, S.M. Haile, and G.J. Snyder, Adv. Funct. Mater. 15, 1860 (2005).

    Article  CAS  Google Scholar 

  67. E.S. Toberer, P. Rauwel, S. Gariel, J. Tafto, and G.J. Snyder, J. Mater. Chem. 20, 9877 (2010).

    Article  CAS  Google Scholar 

  68. A.N. Qiu, L.T. Zhang, and J.S. Wu, Phys. Rev. B. 81, 035203 (2010).

    Article  Google Scholar 

  69. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    Article  CAS  Google Scholar 

  70. U. Haussermann, A.S. Mikhaylushkin, R. Soc. Chem. Dalton Trans. 39, 1036 (2009).

    Google Scholar 

  71. K. Mastronardi, D. Young, C.-C. Wang, P. Khalifah, R.J. Cava, and A.P. Ramirez, Appl. Phys. Lett. 74, 1415 (1999).

    Article  CAS  Google Scholar 

  72. L.P. Romaka, Y.V. Stadnyk, A.M. Goryn, Y.K. Gorelenko, R.V. Skolozdra, 16th International Thermoelectric Conference Proceedings, Dresden, Germany, 1997.

  73. Y. Kimura, T. Kuji, A. Zama, Y. Shibata, and Y. Mishima, Mater. Res. Soc. Symp. Proc. 886, 331 (2006).

    CAS  Google Scholar 

  74. N. Shutoh and S. Sakurada, J. Alloy. Compd. 389, 204 (2005).

    Article  CAS  Google Scholar 

  75. M.-S. Lee, F.P. Poudeu, and S.D. Mahanti, Phys. Rev. B. 83, 085204 (2011).

    Article  Google Scholar 

  76. J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, and J. Yang, Adv. Funct. Mater. 18, 2880 (2008).

    Article  CAS  Google Scholar 

  77. Y. Kawaharada, K. Kurosaki, H. Muta, M. Uno, and S. Yamanaka, J. Alloy. Compd. 384, 308 (2004).

    Article  CAS  Google Scholar 

  78. K. Kurosaki, H. Muta, M. Uno, S. Yamanaka, J. Alloy. Compd. 315, 193 (2001).

    Google Scholar 

  79. K. Koumoto, I. Terasaki, T. Kajitani, M. Ohtaki, and R. Funahashi, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC, 2006), pp. 35–41.

    Google Scholar 

  80. Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, Nature 423, 425 (2003).

    Article  CAS  Google Scholar 

  81. I. Terasaki, M. Iwakawa, T. Nakano, A. Tsukuda, and W. Kobayashi, R. Soc. Chem. Dalton Trans. 39, 1005 (2009).

    Article  Google Scholar 

  82. W. Shin and W. Murayama, Mater. Lett. 45, 302 (2000).

    Article  CAS  Google Scholar 

  83. Y. Cui, J. He. G. Amow, H. Kleinke, R. Soc. Chem. Dalton Trans. 39, 1031 (2009)

    Google Scholar 

  84. Y. Wang, K.H. Lee, H. Ohta, and K. Koumoto, J. Appl. Phys. 105, 103701 (2009).

    Article  Google Scholar 

  85. N.T. Tinh and T. Tsuji, Physics and Engineering of New Materials, Vol. 127, ed. D.T. Cat, A. Pucci, and K.R. Wandelt (Berlin: Springer, 2009), pp. 209–217.

    Chapter  Google Scholar 

  86. M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, J. Appl. Phys. 79, 1816 (1996).

    Article  CAS  Google Scholar 

  87. M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).

    Article  CAS  Google Scholar 

  88. M.I. Fedorov and V.K. Zaitsev, Thermoelectrics Handbook: Macro to Nano, ed. D.M. Rowe (Boca Raton: CRC, 2006), p. 31-1.

    Google Scholar 

  89. A. Sakai, F. Ishii, Y. Onose, Y. Tomioka, S. Yotsuhashi, H. Adachi, N. Nagaosa, and Y. Tokura, J. Phys. Soc. Jpn. 76, 093601 (2007).

    Article  Google Scholar 

  90. A. Heinrich, H. Griessmann, G. Behr, K. Ivanenko, J. Schumann, and H. Vinzelberg, Thin Solid Films 381, 287 (2001).

    Article  CAS  Google Scholar 

  91. J.-G. Cheng, F. Zhou, J.-S. Zhou, J.B. Goodenough, Phys. Rev. B. 82, 214402 (2010).

    Google Scholar 

  92. C.B. Vining, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC, 1995), p. 277.

    Google Scholar 

  93. K. Mars, H. Ihou-Mouko, G. Pont, J. Tobola, and H. Scherrer, J. Electron. Mater. 38, 1008 (2009).

    Article  Google Scholar 

  94. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Berlin: Springer, 2001).

    Google Scholar 

  95. T.M. Tritt, Recent Trends in Thermoelectric Materials Research I, Vol. 69 (New York: Academic, 2001).

    Google Scholar 

  96. J.W. Sharp, Mater. Res. Soc. Symp. Proc. 478, 15 (1997).

    Google Scholar 

  97. E.Y. Tsymbal, D.G. Pettifor, J. Shi, and M.B. Salamon, Phys. Rev. B 59, 8371 (1999).

    Article  CAS  Google Scholar 

  98. M.W. George, Selenium and Tellurium—U.S. Geological Survey Minerals Yearbook (2004).

  99. J. Guilinger, Assessment of Critical Thin Film Resources—Tellurium (Golden, USA: World Industrial Minerals, 1999).

    Google Scholar 

  100. B.A. Andersson, Prog. Photovolt. 8, 61 (2000).

    Article  CAS  Google Scholar 

  101. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J.W. Simonson, S.J. Poon, T.M. Tritt, G. Chen, and Z.F. Ren, Nano Lett. 11, 556 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Amatya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amatya, R., Ram, R.J. Trend for Thermoelectric Materials and Their Earth Abundance. J. Electron. Mater. 41, 1011–1019 (2012). https://doi.org/10.1007/s11664-011-1839-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1839-y

Keywords

Navigation