Skip to main content
Log in

Martensitic Transformation in Sn-Rich SnIn Solder Joints

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The Sn-rich portion of the Sn-In phase diagram includes three phases: diamond cubic α-Sn, tetragonal β-Sn, and simple hexagonal γ-InSn. Despite their very different symmetries, the three phases have relatively simple crystallographic relations, which are described and illustrated. The γ-phase is stable at high temperature, and transforms to β-phase on cooling. Quenching leads to a martensitic transformation when the In content is below about 13 wt.%. The M s temperature decreases linearly with In content, lying between ambient temperature and liquid-nitrogen temperature (77 K) for Sn-(9–11)In. The microstructure of the martensitic β-phase consists of single-variant “blocks” with two variants alternating in packets, as in the “dislocated martensite” structure of steel. This microstructure is preferred since it lowers the elastic energy, given the dyadic form of the γ → β transformation strain. A pronounced martensitic transformation is induced by deformation at temperatures slightly above the M s, particularly in Sn-9In, and the resulting transformation-induced plasticity (TRIP) leads to a significant increase in overall ductility of the joint. Deformation-induced martensite is also produced during the creep of Sn-9In just above the M s (110°C), leading to a low stress exponent (n ≈ 2) for steady-state creep at intermediate stresses with a large strain to failure. This observation is significant scientifically since it is the first case known to us in which significant TRIP has been found in high-temperature creep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.C. Lee, Solder. Surf. Mt. Technol. 26, 65 (1997).

    Article  Google Scholar 

  2. D.G. Kim and S.B. Jung, J. Alloys Compd. 386, 151 (2005).

    Article  CAS  Google Scholar 

  3. J.W. Morris Jr., J.L. Freer Goldstein, and Z. Mei, J. Met. 45, 25 (1993).

    CAS  Google Scholar 

  4. J.L. Freer and J.W. Morris Jr., J. Electron. Mater. 21, 647 (1992).

    Article  CAS  Google Scholar 

  5. G.V. Raynor and J.A. Lee, Acta Metall. 2, 616 (1954).

    Article  CAS  Google Scholar 

  6. O. Nittono and Y. Koyama, Trans. JIM. 23, 285 (1982).

    Google Scholar 

  7. Y. Koyama and O. Nittono, Trans. JIM. 23, 736 (1982).

    CAS  Google Scholar 

  8. Y. Koyama, H. Suzuki, and O. Nittono, Scr. Met. 18, 715 (1984).

    Article  CAS  Google Scholar 

  9. Y. Koyama and H. Suzuki, Acta Metall. 37, 597 (1989).

    Article  CAS  Google Scholar 

  10. T.B. Massalski, Binary Alloy Phase Diagrams (Ohio: American Society for Metals, 1987).

    Google Scholar 

  11. S.J. Zaefferer, Appl. Crystallogr. 30, 10 (2000).

    Article  Google Scholar 

  12. A.J. Khachaturyan, The Theory of Structural Transformations in Solids (New York: Wiley, 1983).

    Google Scholar 

  13. J.W. Morris Jr., Philos. Mag. 90, 3 (2010).

    Article  CAS  Google Scholar 

  14. E. Kostlan and J.W. Morris Jr., Acta Metall. 35, 2167 (1987).

    Article  Google Scholar 

  15. Y. Wang and A.G. Khachaturyan, Acta Mater. 45, 79 (1997).

    Google Scholar 

  16. P. Xu and J.W. Morris Jr., Metall. Mater. Trans. A 27A, 1187 (1996).

    Article  CAS  Google Scholar 

  17. V.F. Zackay, Mechanical Properties and Phase Transformation in Engineering Materials, ed. S.D. Antolovich, R.O. Ritchie, and W.W. Gerberich (Warrendale, PA: TMS, 1986), p. 1.

  18. H.K.D.H. Bhadesia, ISIJ Int. 42, 1059 (2002).

    Article  Google Scholar 

  19. J.W. Morris Jr., ISIJ Int. 48, 1063 (2008).

    Article  CAS  Google Scholar 

  20. K.-O. Lee (Ph.D. thesis, Department of Materials Science and Engineering, University of California, Berkeley, 2007).

  21. J.E. Bird, A.K. Mukherjee, and J.E. Dorn, in Quantitative Relation Between Properties and Microstructure, ed. D.G. Brandon and A. Rosen (Israel University Press, Jerusalem, Israel, 1969), p. 255.

  22. Z. Mei, D. Grivas, M.C. Shine, and J.W. Morris Jr., J. Electron. Mater. 19, 1273 (1990).

    Article  CAS  Google Scholar 

  23. Z. Mei and J.W. Morris Jr., J. Electron Mater. 20, 401 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.W. Morris Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KO., Morris, J. & Hua, F. Martensitic Transformation in Sn-Rich SnIn Solder Joints. J. Electron. Mater. 41, 336–351 (2012). https://doi.org/10.1007/s11664-011-1818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1818-3

Keywords

Navigation