Journal of Electronic Materials

, Volume 41, Issue 3, pp 524–529 | Cite as

Annealing-Induced Morphological Changes in Nanocrystalline Quantum Dots and Their Impact on Charge Transport Properties

  • Sushmita Biswas
  • David J. Gosztola
  • Gary P. Wiederrecht
  • Michael A. Stroscio
  • Mitra Dutta


The effects of thermal annealing on the morphological and photoconductive properties of cadmium selenide quantum dots coated with zinc sulfide are studied. The results of transmission electron microscopy with in situ annealing show a number of events taking place simultaneously, including aggregation of dots, changes in the size and shape distribution, and reduction in interdot separation. Transient absorption results indicate that there is a small redshift of the spectrum. There is a shortening of the absorption decay lifetimes due to annealing. Higher photocurrents are measured in the annealed compared with unannealed dots at room temperature.


Quantum dots annealing cadmium selenide charge transport morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.I. Klimov, ed., Semiconductor and Metal Nanocrystals (New York: Marcel Dekker, 2004).Google Scholar
  2. 2.
    C.B. Murray, C.R. Kagan, and M.G. Bawendi, Annu. Rev. Mater. Sci. 30, 545 (2000).CrossRefGoogle Scholar
  3. 3.
    G. Konstantatos and E.H. Sargent, Proc. IEEE 97, 1666 (2009).Google Scholar
  4. 4.
    D.C. Oertel, M.G. Bawendi, A.C. Arango, and V. Bulovic, Appl. Phys. Lett. 87, 213505 (2005).CrossRefGoogle Scholar
  5. 5.
    D.J. Milliron, I. Gur, and A.P. Alivisatos, MRS Bull. 30, 41 (2005).CrossRefGoogle Scholar
  6. 6.
    V.L. Colvin, M.C. Schlamp, and A.P. Alivisatos, Nature (London) 370, 354 (1994).CrossRefGoogle Scholar
  7. 7.
    B.O. Dabbaousi, M.G. Bawendi, O. Onitsuka, and M.F. Rubner, Appl. Phys. Lett. 66, 1316 (1995).CrossRefGoogle Scholar
  8. 8.
    D. Yu, B.L. Wehrenberg, P. Jha, J. Ma, and P. Guyot- Sionnest, J. Appl. Phys. 99, 104315 (2006).CrossRefGoogle Scholar
  9. 9.
    V.J. Porter, S. Geyer, J.E. Halpert, M.A. Kastner, and M.G. Bawendi, J. Phys. Chem. C 112, 2308 (2008).CrossRefGoogle Scholar
  10. 10.
    M. Drndic, M.V. Jarosz, N.Y. Morgan, M.A. Kastner, and M.G. Bawendi, J. Appl. Phys. 92, 7498 (2002).CrossRefGoogle Scholar
  11. 11.
    Y. Niu, A.M. Munro, Y. Cheng, Y. Tian, M.S. Liu, J. Zhao, J.A. Bardecker, I. Plante, D. Ginger, and A.K.Y. Jen, Adv. Mater. 19, 3371 (2007).CrossRefGoogle Scholar
  12. 12.
    D.E. Motaung, G.F. Malgas, C.J. Adrense, C.J. Oliphant, and D. Knoesen, J. Mater. Sci. 44, 3192 (2009).CrossRefGoogle Scholar
  13. 13.
    M.C. Hegg, M.P. Horning, T. Baehr-Jones, M. Hochberg, and L.Y. Lin, App. Phys. Lett. 96, 101118 (2010).CrossRefGoogle Scholar
  14. 14.
    D.V. Talapin, J.S. Lee, M.V. Kovalenko, and E.V. Shevchenko, Chem. Rev. 110, 389 (2010).CrossRefGoogle Scholar
  15. 15.
    P.T. Snee, R.C. Somers, G. Nair, J.P. Zimmer, M.G. Bawendi, and D.G. Nocera, J. Am. Chem. Soc. 128, 13320 (2006).CrossRefGoogle Scholar
  16. 16.
    S. Eah, H.M. Jaeger, N.F. Scherer, X. Lin, and G.P. Wiederrecht, Chem. Phys. Lett. 386, 390 (2004).CrossRefGoogle Scholar
  17. 17.
    V.I. Klimov, D.W. McBranch, C.A. Leatherdale, and M.G. Bawendi, Phys. Rev. B 60, 740 (1999).Google Scholar
  18. 18.
    S. Vatannia and G. Gildenblat, IEEE J. Quantum Electron. 6, 1093 (1996).CrossRefGoogle Scholar
  19. 19.
    E.E. Mendez and K. Von Klitzing, eds., Physics and Applications of Quantum Wells and Superlattices (New York: Plenum, 1987), p. 159.Google Scholar
  20. 20.
    R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).CrossRefGoogle Scholar
  21. 21.
    L. Esaki, L.L. Chang, and R. Tsu, Proceedings of the 12th International Conference on Low Temperature Physics (1970), p. 551.Google Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Sushmita Biswas
    • 1
  • David J. Gosztola
    • 2
  • Gary P. Wiederrecht
    • 2
  • Michael A. Stroscio
    • 3
    • 4
    • 5
  • Mitra Dutta
    • 3
    • 5
  1. 1.Air Force Research Laboratory2941 Hobson Way, Wright Patterson Air Force BaseDaytonUSA
  2. 2.Center for Nanoscale MaterialsArgonne National LaboratoryArgonneUSA
  3. 3.Department of Electrical and Computer EngineeringUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  5. 5.Department of PhysicsUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations