Skip to main content
Log in

Effect of Al Nanoparticles on the Microstructure, Electrical, and Optical Properties of AZO/Al/AZO Trilayer Thin Film

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, designed growth of aluminum (Al)/aluminum-doped zinc oxide (AZO), AZO/Al/AZO, and AZO/Al multilayer electrodes by radiofrequency (RF) magnetron sputtering on glass substrates was studied. The microstructures, optical properties, and electrical characteristics of the multilayer electrode thin films were analyzed, their structural denseness and thickness were observed by field-emission scanning electron microscopy (FE-SEM), and their crystal orientation was identified by x-ray diffraction (XRD). The resistivity and transmittance of the films were measured by four-point probe and UV–Vis–NIR spectrophotometer, respectively. The resistivity of the AZO/Al/AZO multilayer electrode thin film was 1.55 Ω cm. The average transmittance of the AZO/Al/AZO thin film over wavelengths from 400 nm to 800 nm was much better than that of other thin films, since Al nanoparticles distribute in the AZO thin film during the sputtering process, as observed by high-resolution transmission electron microscopy (HRTEM). In addition, the figure of merit of the AZO/Al/AZO trilayer film was much larger than those of the other structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gadisa, M. Svensson, M.R. Andersson, and O. Inganäs, Appl. Phys. Lett. 84, 3906 (2004).

    Article  Google Scholar 

  2. C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett. 66, 2679 (1995).

    Article  CAS  Google Scholar 

  3. T. Minami, Thin Solid Films 516, 5822 (2008).

    Article  CAS  Google Scholar 

  4. H.J. Cho, S.U. Lee, B. Hong, Y.D. Shin, J.Y. Ju, H.D. Kim, M. Park, and W.S. Choi, Thin Solid Films 518, 2941 (2010).

    Article  CAS  Google Scholar 

  5. V.A. Dao, T. Le, T. Tran, H.C. Nguyen, K. Kim, J. Lee, S. Jung, N. Lakshminarayan, and J. Yi, J. Electroceram. 23, 356 (2008).

    Article  Google Scholar 

  6. H. Wang, J. Xu, M. Ren, and L. Yang, J. Mater. Sci.: Mater. Electron. 19, 1135 (2008).

    Article  CAS  Google Scholar 

  7. J.H. Lee, J. Electroceram. 23, 512 (2009).

    Article  CAS  Google Scholar 

  8. B.-Z. Dong, H. Hu, G.-J. Fang, X.-Z. Zhao, D.-Y. Zheng, and Y.-P. Sun, J. Appl. Phys. 103, 073711 (2008).

    Article  Google Scholar 

  9. D. Song, J. Xia, E.-C. Cho, and A.G. Aberle, IEEE (2002).

  10. B. Chapman, Glow Discharge Process (New York: Wiley, 1980).

    Google Scholar 

  11. W. Kiyotaka and H. Shigeru, Handbook of Sputter Deposition Technology (Park Ridge, NJ: Noyes, 1992).

    Google Scholar 

  12. R.B. Pode, C.J. Lee, D.G. Moon, and J.I. Han, Appl. Phys. Lett. 84, 4614 (2004).

    Article  CAS  Google Scholar 

  13. D.R. Sahu, S.Y. Lin, and J.L. Huang, Thin Solid Films 516, 4728 (2008).

    Article  CAS  Google Scholar 

  14. K.H. Choi, J.Y. Kim, Y.S. Lee, and H.J. Kim, Thin Solid Films 341, 152 (1999).

    Article  CAS  Google Scholar 

  15. A. Klöppel, W. Kriegseis, B.K. Meyer, A. Scharmann, C. Daube, J. Stollenwerk, and J. Trube, Thin Solid Films 365, 139 (2000).

    Article  Google Scholar 

  16. D.R. Sahu and J.L. Huang, Thin Solid Films 515, 876 (2006).

    Article  CAS  Google Scholar 

  17. D.R. Sahu, S.Y. Lin, and J.L. Huang, Appl. Surf. Sci. 252, 7509 (2006).

    Article  CAS  Google Scholar 

  18. D.R. Sahu and J.L. Huang, Appl. Surf. Sci. 253, 827 (2006).

    Article  CAS  Google Scholar 

  19. D.R. Sahu and J.L. Huang, Thin Solid Films 516, 208 (2007).

    Article  CAS  Google Scholar 

  20. C. Lee, A. Park, Y. Cho, M. Park, W.I. Lee, and H.W. Kim, Ceram. Int. 34, 1093 (2008).

    Article  CAS  Google Scholar 

  21. C.F. Bohren and D.R. Huffmann, Absorption and Scattering of Light by Small Particles (New York: Wiley-Interscience, 2010).

    Google Scholar 

  22. D. Zhang, P. Wang, R. Murakami, and X. Song, Appl. Phys. Lett. 96, 233114 (2010).

    Article  Google Scholar 

  23. M. Bender, W. Seelig, C. Daube, H. Frankenberge, B. Ocker, and J. Btollenwerk, Thin Solid Films 326, 67 (1998).

    Article  CAS  Google Scholar 

  24. G. Haacke, J. Appl. Phys. 47, 4086 (1976).

    Article  CAS  Google Scholar 

  25. S. Sutthana, N. Hongsith, and S. Choopun, Curr. Appl. Phys. 10, 813 (2010).

    Article  Google Scholar 

  26. T. Yang, Z. Zhang, S. Song, Y. Li, Lv. MaoShui, Z. Wu, and S. Han, Vacuum 83, 257 (2009).

    Article  Google Scholar 

  27. T. Dimopoulos, G.Z. Radnoczi, B. Pécz, and H. Brückl, Thin Solid Films 519, 1470 (2010).

    Article  CAS  Google Scholar 

  28. L.S. Wang, Y.Z. Chen, G.H. Yue, H.D. She, X.H. Luo, and D.L. Peng, Appl. Surf. Sci. 255, 2545 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yen-Sheng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YS., Tseng, WC. Effect of Al Nanoparticles on the Microstructure, Electrical, and Optical Properties of AZO/Al/AZO Trilayer Thin Film. J. Electron. Mater. 41, 437–441 (2012). https://doi.org/10.1007/s11664-011-1810-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1810-y

Keywords

Navigation