Journal of Electronic Materials

, Volume 41, Issue 3, pp 494–497 | Cite as

Low-Temperature Epitaxy of Compressively Strained Silicon Directly on Silicon Substrates

  • D. Shahrjerdi
  • B. Hekmatshoar
  • S. W. Bedell
  • M. Hopstaken
  • D. K. Sadana


We report epitaxial growth of compressively strained silicon directly on (100) silicon substrates by plasma-enhanced chemical vapor deposition. The silicon epitaxy was performed in a silane and hydrogen gas mixture at temperatures as low as 150°C. We investigate the effect of hydrogen dilution during the silicon epitaxy on the strain level by high-resolution x-ray diffraction. Additionally, triple-axis x-ray reciprocal-space mapping of the samples indicates that (i) the epitaxial layers are fully strained and (ii) the strain is graded. Secondary-ion mass spectrometry depth profiling reveals the correlation between the strain gradient and the hydrogen concentration profile within the epitaxial layers. Furthermore, heavily phosphorus-doped layers with an electrically active doping concentration of ~2 × 1020 cm−3 were obtained at such low growth temperatures.


Low temperature epitaxial growth compressive strain heavily doped 


  1. 1.
    D.J. Eaglesham, F.C. Unterwald, H. Luftman, D.P. Adams, and S.M. Yalisove, J. Appl. Phys. 74, 6615 (1993).CrossRefGoogle Scholar
  2. 2.
    K. Baert, P. Deschepper, J. Poortmans, J. Nijs, and R. Mertens, Appl. Phys. Lett. 60, 442 (1992).CrossRefGoogle Scholar
  3. 3.
    T. Kitagawa, M. Kondo, and A. Matsuda, Appl. Surf. Sci. 159–160, 30 (2000).CrossRefGoogle Scholar
  4. 4.
    M.F. Baroughi, H.G. El-Gohary, C.Y. Cheng, and S. Sivoththaman, Mater. Res. Soc. Symp. Proc. 989, 19 (2007).Google Scholar
  5. 5.
    J. Damon-Lacoste and P. Roca i Cabarrocas, J. Appl. Phys. Lett. 105, 063712 (2009).Google Scholar
  6. 6.
    M.L. Lee, E.A. Fitzgerald, M.T. Bulsara, M.T. Currie, and A. Lochtefeld, J. Appl. Phys. 97, 011101 (2005).CrossRefGoogle Scholar
  7. 7.
    T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann, K. Johnson, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson, and M. Bohr, IEDM Tech. Dig., 978 (2003).Google Scholar
  8. 8.
    Z. Lou, Y.F. Chong, J. Kim, N. Rovedo, B. Greene, S. Panda, T. Sato, J. Holt, D. Chidambarrao, J. Li, R. Davis, A. Madan, A. Turansky, O. Gluschenkov, R. Lindsay, A. Ajmera, J. Lee, S. Mishra, R. Amos, D. Schepis, H. Ng, and K. Rim, IEDM Tech. Dig., 489 (2005).Google Scholar
  9. 9.
    J. Koh, A.S. Ferlauto, P.I. Rovira, C.R. Wronski, and R.W. Collins, Appl. Phys. Lett. 75, 2286 (1999).CrossRefGoogle Scholar
  10. 10.
    P. Roca i Cabarrocas, N. Layadi, T. Heitz, B. Drevillon, and I. Solomon, Appl. Phys. Lett. 66, 3609 (1995).CrossRefGoogle Scholar
  11. 11.
    A.S. Ferlauto, R.J. Koval, C.R. Wronski, and R.W. Collins, Appl. Phys. Lett. 80, 2666 (2002).CrossRefGoogle Scholar
  12. 12.
    W.E. Beadle, J.C. Tsai, and R.D. Plummer, Quick Reference to Manual for Silicon Integrated Circuit Technology (New York: Wiley, 1985).Google Scholar
  13. 13.
    B.S. Meyerson and M.L. Yu, J. Electrochem. Soc. 131, 2366 (1984).CrossRefGoogle Scholar
  14. 14.
    K.G. McQuhae and A.S. Brown, Solid State Electron. 15, 259 (1972).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • D. Shahrjerdi
    • 1
  • B. Hekmatshoar
    • 1
  • S. W. Bedell
    • 1
  • M. Hopstaken
    • 1
  • D. K. Sadana
    • 1
  1. 1.IBM T. J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations