Skip to main content
Log in

Atom Probe Tomography of Zinc Oxide Nanowires

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Wide-bandgap zinc oxide (ZnO) semiconductors and nanowires have become important materials for electronic and photonic device applications. In this work, we report the growth of well-aligned single-crystal ZnO nanowire arrays on sapphire substrates by chemical vapor deposition and the development of atom probe tomography, an emerging nanoscale characterization method capable of providing deeper insight into the three-dimensional distribution of atoms and impurities within its structure. Using a metal-catalyst-free approach, the influence of the growth parameters on the orientation and density of the nanowires were studied. The resulting ZnO nanowires were determined to be single crystalline, with diameter on the order of 50 nm to 150 nm and length that could be controlled between 0.5 μm to 20 μm. Their density was on the order of high 108 cm−2 to low 109 cm−2. In addition to routine characterizations using scanning and transmission electron microscopy, x-ray diffraction, photoluminescence, and Raman spectroscopy, we developed the atom probe tomography technique for ZnO nanowires, comparing the voltage pulse and laser pulse modes. In-depth analysis of the data was carried out to determine the accurate chemical composition of the nanowires and reveal the incorporation of nitrogen impurities. The current–voltage characteristics of individual nanowires were measured to determine their electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  2. J.B. Baxter and C.A. Schmuttenmaer, J. Phys. Chem. B 110, 25229 (2006).

    Article  CAS  Google Scholar 

  3. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. Choi, J. Adv. Funct. Mater. 12, 323 (2002).

    Article  CAS  Google Scholar 

  4. X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, and Y. Li, Nano Lett. 9, 2331 (2009).

    Article  CAS  Google Scholar 

  5. G.D. Yuan, W.J. Zhang, J.S. Jie, X. Fan, J.A. Zapien, Y.H. Leung, L.B. Luo, P.F. Wang, C.S. Lee, and S.T. Lee, Nano Lett. 8, 2591 (2008).

    Article  CAS  Google Scholar 

  6. A.B.F. Martinson, J.W. Elam, J.T. Hupp, and M.J. Pellin, Nano Lett 7, 8 2183 (2007).

    Article  Google Scholar 

  7. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, and D. Wang, Nano Lett. 7, 1003 (2007).

    Article  CAS  Google Scholar 

  8. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001).

    Article  CAS  Google Scholar 

  9. K. Park, J.S. Lee, M.Y. Sung, and S. Kim, Jpn. J. Appl. Phys. 41, 7317 (2002).

    Article  CAS  Google Scholar 

  10. T. Ng, B. Chen, J. Li, J. Han, M. Meyyappan, J. Wu, X. Li, and E.E. Haller, Appl. Phys. Lett. 82, 2023 (2003).

    Article  CAS  Google Scholar 

  11. C.L. Xu, D.H. Qin, H. Li, Y. Guo, T. Xu, and H.L. Li, Mater. Lett. 58, 3976 (2004).

    Article  CAS  Google Scholar 

  12. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, Nano Lett. 5, 1231 (2005).

    Article  CAS  Google Scholar 

  13. X. Wang, X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, and Z.L. Wang, Nano Lett. 6, 2768 (2006).

    Article  CAS  Google Scholar 

  14. Y. Li, G.W. Meng, L.D. Zhang, and F. Phillipp, Appl. Phys. Lett. 76, 2011 (2009).

    Article  Google Scholar 

  15. H. Zhuang, J. Wang, H. Liu, J. Li, and P. Xu, Acta Phys. Pol. A 119, 819 (2010).

    Google Scholar 

  16. M.K. Miller and R.G. Forbes, Mater. Charact. 60, 461 (2009).

    Article  CAS  Google Scholar 

  17. D.N. Seidman, Annu. Rev. Mater. Res 37, 127 (2007).

    Article  CAS  Google Scholar 

  18. Y. Zhang (Ph.D. dissertation, 2009).

  19. R. Lardee, E. Talbot, P. Pareige, H. Bieber, G. Schmerber, S. Colis, V. Pierron-Bohnes, and A. Dinia, J. Am. Chem. Soc. 133, 1451 (2011).

    Article  Google Scholar 

  20. C. Oberdorfer, P. Stender, C. Reinke, and G. Schmitz, Microsc. Microanal. 13, 342 (2007).

    Article  CAS  Google Scholar 

  21. F. Decremps, R. Eacute, J. Pellicer-Porres, A.M. Saitta, J.-C. Chervin, and A. Polian, Phys. Rev. B 65, 092101 (2002).

    Article  Google Scholar 

  22. Y.M. Chen, T. Ohkubo, and K. Hono, Ultramicroscopy 111, 562 (2011).

    Article  CAS  Google Scholar 

  23. D.E. Perea, S.J. May, B.W. Wessels, D.N. Seidman, and L.J. Lauhon, Nano Lett. 6, 181 (2005).

    Article  Google Scholar 

  24. A. Soudi, E.H. Khan, J.T. Dickinson, and Y. Gu, Nano Lett. 9, 1844 (2009).

    Article  CAS  Google Scholar 

  25. Y. Yan, S.B. Zhang, and S.T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).

    Article  CAS  Google Scholar 

  26. E.C. Lee, Y.S. Kim, Y.G. Lin, and K.J. Chang, Phys. Rev. B 64, 085120 (2001).

    Article  Google Scholar 

  27. P. Fons, H. Tampo, A.V. Kolobiv, M. Ohkubo, S. Niki, J. Tominaga, R. Carboni, F. Boscherini, and S. Freidrich, Phys. Rev. Lett. 96, 045504 (2006).

    Article  Google Scholar 

  28. C.W. Zou, X.D. Yan, J. Han, R.Q. Chen, W. Gao, and J. Metson, Appl. Phys. Lett. 94, 171903 (2009).

    Article  Google Scholar 

  29. G.Y. Lai, High Temperature Corrosion and Materials Applications (Materials Park: ASM International, 2007).

    Google Scholar 

  30. X.J. Ye, H.A. Song, W. Zhong, M.H. Xu, X.S. Qi, C.Q. Jin, Z.X. Yang, C.T. Au, and Y.W. Du, J. Phys. D Appl. Phys. 41, 155005 (2008).

    Article  Google Scholar 

  31. C.L. Perkins, S.H. Lee, X. Li, S.E. Asher, and T.J. Coutts, J. Appl. Phys. 97, 034907 (2005).

    Article  Google Scholar 

  32. W.W. Liu, B. Yao, Z.Z. Zhang, Y.F. Li, B.H. Li, C.X. Shan, J.Y. Zhang, D.Z. Shen, and X.W. Fan, J. Appl. Phys. 109, 093518 (2011).

    Article  Google Scholar 

  33. J. Han, A.K. Azad, and W. Zhang, J. Nanoelect. Optoelect. 2, 222 (2007).

    Article  Google Scholar 

  34. J.B. Baxter and C.A. Schmuttenmaer, Phys. Rev. B 80, 235205 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Kung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dawahre, N., Shen, G., Balci, S. et al. Atom Probe Tomography of Zinc Oxide Nanowires. J. Electron. Mater. 41, 801–808 (2012). https://doi.org/10.1007/s11664-011-1803-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1803-x

Keywords

Navigation