Skip to main content

Advertisement

Log in

Reduction of Dislocation Density in HgCdTe on Si by Producing Highly Reticulated Structures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

HgCdTe, because of its narrow band gap and low dark current, is the infrared detector material of choice for several military and commercial applications. CdZnTe is the substrate of choice for HgCdTe as it can be lattice matched, resulting in low-defect-density epitaxy. Being often small and not circular, layers grown on CdZnTe are difficult to process in standard semiconductor equipment. Furthermore, CdZnTe can often be very expensive. Alternative inexpensive large circular substrates, such as silicon or gallium arsenide, are needed to scale production of HgCdTe detectors. Growth of HgCdTe on these alternative substrates has its own difficulty, namely a large lattice mismatch (19% for Si and 14% for GaAs). This large mismatch results in high defect density and reduced detector performance. In this paper we discuss ways to reduce the effects of dislocations by gettering these defects to the edge of a reticulated structure. These reticulated surfaces enable stress-free regions for dislocations to glide to. In the work described herein, HgCdTe-on-Si diodes have been produced with R 0 A 0 of over 400 Ω cm2 at 78 K and cutoff of 10.1 μm. Further, these diodes have good uniformity at 78 K at both 9.3 μm and 10.14 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.E. Tennant, D. Lee, M. Zandian, E. Piquette, and M. Carmody, J. Electron. Mater. 37, 1406 (2008).

    Article  CAS  Google Scholar 

  2. A.J. Stoltz, J.D. Benson, P.R. Boyd, M. Martinka, J.B. Varesi, A.W. Kaleczyc, E.P.G. Smith, S.M. Johnson, W.A. Radford, and J.H. Dinan, J. Electron. Mater. 32, 692 (2003).

    Article  CAS  Google Scholar 

  3. P. Müller, H. Zogg, A. Fach, J. John, C. Paglino, A.N. Tiwari, M. Krejci, and G. Kostorz, Phys. Rev. Lett. 78, 3007 (1997).

    Article  Google Scholar 

  4. X.G. Zhang, A. Rodriguez, X. Wang, P. Li, F.C. Jain, and J.E. Ayers, Appl. Phys. Lett. 77, 2524 (2000).

    Article  CAS  Google Scholar 

  5. M. Yamaguchi, J. Mat. Res. 6, 376 (1991).

    Article  CAS  Google Scholar 

  6. M. Carmody, D. Lee, M. Zandian, J. Phillips, and J. Arias, J. Electron. Mater. 32, 710 (2003).

    Article  CAS  Google Scholar 

  7. S.M. Johnson, D.R. Rhiger, J.P. Rosenbeck, J.M. Peterson, S.M. Taylor, and M.E. Boyd, J. Vac. Sci. Technol. B10, 1499 (1992).

    Google Scholar 

  8. M. Carmody, J.G. Pasko, D. Edwall, M. Daraselia, L.A. Almeida, J. Molstad, J.H. Dinan, J.K. Markunas, Y. Chen, G. Brill, and N.K. Dhar, J. Electron. Mater. 33, 531–537 (2004).

    Article  CAS  Google Scholar 

  9. J.D. Benson, S. Farrell, G. Brill, Y. Chen, P.S. Wijewarnasuriya, L.O. Bubulac, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, U. Lee, M.F. Vilela, J. Peterson, S.M. Johnson, D.D. Lofgreen, D.Rhiger, E.A. Patten, and P.M. Goetz, Dislocation Analysis in (112)B HgCdTe/CdTe/Si, to be published JEM (this conference).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Stoltz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoltz, A.J., Benson, J.D., Carmody, M. et al. Reduction of Dislocation Density in HgCdTe on Si by Producing Highly Reticulated Structures. J. Electron. Mater. 40, 1785–1789 (2011). https://doi.org/10.1007/s11664-011-1697-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1697-7

Keywords

Navigation