Skip to main content
Log in

Evaluating Thermoelectric Power Generation Device Performance Using a Rectangular Microchannel Heat Sink

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, a microchannel heat sink is applied to a thermoelectric power generation (TEG) device and compared with a traditional heat sink. The advantages and disadvantages of using each heat sink in a TEG device are evaluated. The microchannel hydraulic diameter is 5.33 × 10−4 m and that of the macrochannel is 2.13 × 10−3 m. Pressure drops and heat removed in the micro heat sink configuration are obtained for six different mass flow rates for the laminar and turbulent fluid flow regimes. By computationally applying a constant temperature difference between the hot and cold sides of the TEG, the fluid and thermal parameters are considered for both laminar and turbulent regimes in the channels. Furthermore, using the temperature difference through each TEG, the system efficiency is calculated. The results show that the microchannel heat sink gives a higher pressure drop, but the heat flow across the TEG device and the mass flow rate needed to provide the same generated power are less than for the macrochannel heat sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

TEG leg area, m2

c :

Specific heat of water, 4178 J/kg K

D h :

Hydraulic diameter of the channel, m

g :

Gravity, m/s2

H :

Heat sink height, m

H c :

Channel height, m

K :

Thermal conductivity of fluid, W/m K

L :

Channel length, m

l :

TEG leg length, m

\( \dot{m} \) :

Mass flow rate, kg/s

N :

Number of TEG legs along the channel length

Nu:

Nusselt number of heat sinks

P :

TEG power generated, W

p ch :

Pressure at the channel, Pa

Pr:

Prandtl number

P 1 :

System power loss, W

Re:

Reynolds number

Q h :

Heat absorbed by heat sink, W

Q 1 :

Volumetric flow rate, m3/s

q s :

Heat flux at the microchannel heat sink base plate, W/m2

T c :

TEG legs cold-side temperature, K

T e :

Ambient temperature, K

T f :

Mean fluid film temperature, K

T h :

TEG legs hot-side temperature, K

T i :

Inlet fluid temperature, K

T fi :

Coolant temperature at the sink inlet, K

T teg :

Temperature of the TEG leg, K

T fo :

Coolant temperature at the heat sink exit, K

\( {\vec{{V}}} \) :

Velocity, m/s

W :

Heat sink width, m

W w :

Fin width, m

W c :

Width of the channels, m

\( \mu_{\rm{f}} \) :

Dynamic viscosity, N s/m2

\( \rho_{\rm{f}} \) :

Fluid density, kg/m3

References

  1. P. Rosa, T.G. Karayiannis, and M.W. Collins, Appl. Therm. Eng. 29, 3447 (2009).

    Article  CAS  Google Scholar 

  2. P. Naphon, S. Klangchart, and S. Wongwises, Int. Commun. Heat Mass Transf. 36, 834 (2009).

    Article  CAS  Google Scholar 

  3. Y. Chen, C. Zhang, M. Shi, and J. Wu, Int. Commun. Heat Mass Transf. 36, 917 (2009).

    Article  CAS  Google Scholar 

  4. J. Yu and H. Zhao, J. Power Sources 172, 428 (2007).

    Article  CAS  Google Scholar 

  5. D.T. Crane and G.S. Jackson, Energy Conserv. Manag. 45, 1565 (2004).

    Article  CAS  Google Scholar 

  6. H.P.J. de Bock and V. Novak, 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE 1276 (2008).

  7. R. Chein and Y. Chen, Int. J. Refrig. 28, 828 (2005).

    Article  CAS  Google Scholar 

  8. D.M. Rowe, Ph.D., D.Sc (Editor), Macro to Nano, Taylor & Francis Group, LLC, 2006.

  9. R. Chein and J. Chen, Int. J. Therm. Sci. 48, 1627 (2009).

    Article  CAS  Google Scholar 

  10. X.F. Peng and G.P. Peterson, Int. Commun. Heat Mass Transf. 39, 2599 (1996).

    Article  CAS  Google Scholar 

  11. H. Wang, W.D. Porter, and J. Sharp, 24th International Conference on Thermoelectrics, IEEE 91 (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rezania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezania, A., Rosendahl, L.A. Evaluating Thermoelectric Power Generation Device Performance Using a Rectangular Microchannel Heat Sink. J. Electron. Mater. 40, 481–488 (2011). https://doi.org/10.1007/s11664-011-1622-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1622-0

Keywords

Navigation