Elastically Stretchable Insulation and Bilevel Metallization and Its Application in a Stretchable RLC Circuit

  • J. HarrisEmail author
  • O. Graudejus
  • S. Wagner
Open Access


Stretchable electronics need stretchable wiring membranes that are equivalent to printed wiring boards but with elastically stretchable insulators and multilevel metallization. We have developed technology for elastically stretchable two-level metallization on an elastomeric membrane. Two levels of conductors were separated by a photopatternable elastomeric dielectric and connected through via holes. They were evaluated at uniaxial tensile strains of up to 30% and then used to create an elastomeric resistor–inductor–capacitor (RLC) circuit, whose alternating-current (AC) response was measured at biaxial tensile strains of up to 6%. We describe the fabrication process, morphology, and electrical performance of the bilevel metallization and the RLC circuit.


Thin film stretchable conductors bilevel conductors resonant circuit 


  1. 1.
    Z. Yu, O. Graudejus, C. Tsay, S.P. Lacour, S. Wagner, and B. Morrison, J. Neurotrauma 26, 1135 (2009).CrossRefGoogle Scholar
  2. 2.
    K.W. Meacham, R.J. Giuly, L. Guo, S. Hochman, and S.P. DeWeerth, Biomed. Microdev. 10, 259 (2008).CrossRefGoogle Scholar
  3. 3.
    J.J. FitzGerald, S.P. Lacour, S.B. McMaho, and J.W. Fawcett, IEEE Trans. Biomed. Eng. 56, 1524 (2009).CrossRefGoogle Scholar
  4. 4.
    R. Carta, P. Jourand, B. Hermans, J. Thoné, D. Brosteaux, T. Vervust, F. Bossuyt, F. Axisa, J. Vanfleteren, and R. Puers, Sens. Act. A 156, 79 (2009).CrossRefGoogle Scholar
  5. 5.
    S.P. Lacour, S. Wagner, R. Narayan, T. Li, and Z. Suo, J. Appl. Phys. 100, 014913 (2006).CrossRefGoogle Scholar
  6. 6.
    H.R. Nicholls and M.H. Lee, Int. J. Robot. Res. 8, 3 (1989).CrossRefGoogle Scholar
  7. 7.
    O. Graudejus, Z. Yu, J. Jones, B. Morrison III, and S. Wagner, J. Electrochem. Soc. 156, 85 (2009).CrossRefGoogle Scholar
  8. 8.
    M. Gonzalex, F. Axisa, M.V. Bulcke, D. Brosteaux, B. Vandevelde, and J. Vanfleteren, Microelectron. Reliab. 48, 6 (2008).Google Scholar
  9. 9.
    J. Jones, S.P. Lacour, S. Wagner, and Z. Suo, J. Vac. Sci. Technol. A 22, 1723 (2004).CrossRefGoogle Scholar
  10. 10.
    S.P. Lacour, J. Jones, S. Wagner, T. Li, and Z. Suo, Proc. IEEE 93, 1459 (2005).CrossRefGoogle Scholar
  11. 11.
    S.P. Lacour, D. Chan, S. Wagner, T. Li, and Z. Suo, Appl. Phys. Lett. 88, 204103 (2006).CrossRefGoogle Scholar
  12. 12.
    I.M. Graz, D.P.J. Cotton, and S.P. Lacour, Appl. Phys. Lett. 94, 071902 (2009).CrossRefGoogle Scholar
  13. 13.
    R.C. Dorf and J.A. Svoboda, Introduction to Electronic Circuits, 7th ed. (New York: Wiley, 2006), p. 305.Google Scholar
  14. 14.
    S.S. Mohan, M.D.M. Hershenson, S.P. Boyd, and T.H. Lee, IEEE J. Solid-State Circuits 34, 1419 (1999).CrossRefGoogle Scholar
  15. 15.
    Agilent Technologies, Impedance Measurement Handbook: A Guide to Measurement Technology and Techniques (Palo Alto, CA: Agilent Technologies Co. Ltd, 2003), p. 2–20.Google Scholar
  16. 16.
    D.R. Lide, CRC Handbook of Chemistry and Physics, 84th ed. (Boca Raton, FL: CRC, 2003).Google Scholar
  17. 17.
    Dow Corning Sylgard 184 Product Data Sheet, Accessed 13 Sep 2010.
  18. 18.
    Dow Corning WL5150 Product Data Sheet, Accessed 16 Mar 2011.

Copyright information

© TMS 2011

Authors and Affiliations

  1. 1.Exponent Failure Analysis AssociatesElectrical and Semiconductor PracticePhoenixUSA
  2. 2.Center for Adaptive Neural SystemsArizona State UniversityTempeUSA
  3. 3.Department of Electrical Engineering, Princeton Institute for the Science and Technology of MaterialsPrinceton UniversityPrincetonUSA

Personalised recommendations