Journal of Electronic Materials

, Volume 40, Issue 5, pp 1083–1086 | Cite as

Thermoelectric Performance of Zn and Nd Co-doped In2O3 Ceramics

  • Yong Liu
  • Yuan-Hua Lin
  • Jinle Lan
  • Bo-Ping Zhang
  • Wei Xu
  • Ce-Wen Nan
  • Hongmin Zhu
Article

Polycrystalline In2O3 ceramics co-doped with Zn and Nd were prepared by the spark plasma sintering (SPS) process, and microstructure and thermoelectric (TE) transport properties of the ceramics were investigated. Our results indicate that co-doping with Zn2+ and Nd3+ shows a remarkable effect on the transport properties of In2O3-based ceramics. Large electrical conductivity (~130 S cm−1) and thermopower (~220 μV K−1) can be observed in these In2O3-based ceramic samples. The maximum power factor (PF) reaches 5.3 × 10−4 W m−1 K−2 at 973 K in the In1.92Nd0.04Zn0.04O3 sample, with a highest ZT of ~0.25.

Keywords

Thermoelectric In2O3 electrical transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.M. Tritt, Science 283, 804 (1999).Google Scholar
  2. 2.
    M. Prevel, O. Perez, and J.G. Noudem, Solid State Sci. 9, 231 (2007).CrossRefGoogle Scholar
  3. 3.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  4. 4.
    G.D. Mahan, B.C. Sales, and J. Sharp, Phys. Today 50, 42 (1997).CrossRefGoogle Scholar
  5. 5.
    A. Walsh, J.L. Da Silva, S.H. Wei, C. Körber, A. Klein, L.F. Piper, A. DeMasi, K.E. Smith, G. Panaccione, P. Torelli, D.J. Payne, A. Bourlange, and R.G. Egdell, Phys. Rev. Lett. 100, 167402 (2008).CrossRefGoogle Scholar
  6. 6.
    M. Marezio, Acta Crystallogr. 20, 723 (1966).CrossRefGoogle Scholar
  7. 7.
    K.L. Chopra, S. Major, and D.K. Pandia, Thin Solid Films 102, 1 (1983).CrossRefGoogle Scholar
  8. 8.
    I. Hamberg and C.G. Granqvist, Phys. Rev. B 30, 3240 (1984).CrossRefGoogle Scholar
  9. 9.
    Y. Shigesato, S. Takaki, and T. Haranoh, J. Appl. Phys. 71, 3356 (1992).CrossRefGoogle Scholar
  10. 10.
    K. Sreenivas, T.S. Rao, and A. Mansingh, J. Appl. Phys. 57, 384 (1985).CrossRefGoogle Scholar
  11. 11.
    J. Tamaki, Sens. Actuators B 83, 190 (2002).CrossRefGoogle Scholar
  12. 12.
    D. Bérardan, E. Guilmeau, A. Maignan, and B. Raveau, Solid State Commun. 146, 97 (2008).CrossRefGoogle Scholar
  13. 13.
    E. Guilmeau, D. Bérardan, Ch. Simon, A. Maignan, B. Raveau, D. Ovono Ovono, and F. Delorme, J. Appl. Phys. 106, 053715 (2009).CrossRefGoogle Scholar
  14. 14.
    M. Ohtaki, K. Araki, and K. Yamamoto, J. Electron. Mater. 38, 1234 (2009).CrossRefGoogle Scholar
  15. 15.
    L. Bizo, J. Choinest, R. Retoux, and B. Raveau, Solid State Commun. 136, 163 (2005).CrossRefGoogle Scholar
  16. 16.
    K. Park, K.K. Kim, J.K. Seong, S.J. Kim, J.-G. Kim, W.-S. Cho, and S. Nahm, Mater. Lett. 61, 4759 (2007).CrossRefGoogle Scholar
  17. 17.
    B. Fisher, L. Patlagan, G.M. Reisner, and A. Knizhnik, Phys. Rev. B 61, 470 (2000).CrossRefGoogle Scholar
  18. 18.
    Y. Liu, Y.-H. Lin, J. Lan, W. Xu, B.-P. Zhang, C.-W. Nan, and H. Zhu, J. Am. Ceram. Soc. 93, 2938 (2010).CrossRefGoogle Scholar

Copyright information

© TMS 2011

Authors and Affiliations

  • Yong Liu
    • 1
    • 2
  • Yuan-Hua Lin
    • 2
  • Jinle Lan
    • 2
  • Bo-Ping Zhang
    • 3
  • Wei Xu
    • 4
  • Ce-Wen Nan
    • 2
  • Hongmin Zhu
    • 1
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  2. 2.State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingPeople’s Republic of China
  4. 4.Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations