Skip to main content
Log in

High-Temperature Thermoelectric and Microstructural Characteristics of Cobalt-Based Oxides with Ga Substituted on the Co-Site

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

The effects of Ga substitution on the Co-site on the high-temperature thermoelectric properties and microstructure are investigated for the misfitlayered Ca3Co4O9 and the complex perovskite-related Sr3RECo4O10.5 (RE = rare earth) cobalt-based oxides. For both systems, substitution of Ga for Co results in a simultaneous increase in the Seebeck coefficient (S) and the electrical conductivity (σ), and the influence is more significant in the high temperature region. The power factor (S 2 σ) is thereby remarkably improved by Ga substitution, particularly at high temperatures. Texture factor calculations using x-ray diffraction pattern data for pressed and powder samples reveal that the Ga-doped samples are highly textured. Microstructure observed by scanning electron microscopy shows very well-crystallized grains for the samples with Ga substitution for Co. Among the Ga-doped samples, Ca3Co3.95Ga0.05O9 shows the best ZT value of 0.45 at 1200 K, which is about 87.5% higher than the nondoped one, a considerable improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Raccah and J.B. Goodenough, Phys. Rev. 155, 932 (1967). doi:10.1103/PhysRev.155.932.

    Article  CAS  Google Scholar 

  2. S. Kimura, Y. Maeda, K. Kashiwagi, H. Yamaguchi, M. Hagiwara, S. Yoshida, I. Terasaki, and K. Kindo, Phys. Rev. B 78, 180403 (2008). doi:10.1103/PhysRevB.78.180403.

    Article  Google Scholar 

  3. G. Briceno, H. Chang, X. Sun, P.G. Schultz, and X.D. Xiang, Science 270, 273 (1995).

    Article  CAS  Google Scholar 

  4. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997). doi:10.1103/PhysRevB.56.R12685.

    Article  CAS  Google Scholar 

  5. M. Shikano and R. Funahashi, Appl. Phys. Lett. 82, 1851 (2003). doi:10.1143/JJAP.45.4152.

    Article  CAS  Google Scholar 

  6. T. He, J. Chen, T.G. Calvarese, and M.A. Subramanian, Solid State Sci. 8, 467 (2006). doi:10.1016/j.solidstatesciences.2006.01.002.

    Article  CAS  Google Scholar 

  7. S. Yoshida, W. Kobayashi, T. Nakano, I. Terasaki, K. Matsubayashi, Y. Uwatoko, I. Grigoraviciute, M. Karppinen, and H. Yamauchi, J. Phys. Soc. Jpn. 78, 094711 (2009). doi:10.1143/JPSJ.78.094711.

    Article  Google Scholar 

  8. J.W. Moon, Y. Masuda, W.S. Seo, and K. Koumoto, Mater. Lett. 48, 225 (2001).

    Article  CAS  Google Scholar 

  9. Y. Wang, Y. Sui, J. Cheng, X. Wang, J. Miao, Z. Liu, Z. Qian, and W. Su, J. Alloys Compd. 448, 1 (2008). doi:10.1016/j.jallcom.2006.10.047.

    Article  CAS  Google Scholar 

  10. F.P. Zhang, Q.M. Lu, and J.X. Zhang, Phys. B 404, 2142 (2009). doi:10.1016/j.physb.2009.04.002.

    Article  CAS  Google Scholar 

  11. M. Prevel, E.S. Reddy, O. Perez, W. Kobayashi, I. Terasaki, C. Goupil, and J.G. Noudem, Jpn. J. Appl. Phys. 46, 6533 (2007). doi:10.1143/JJAP.46.6533.

    Article  CAS  Google Scholar 

  12. H.Q. Liu, X.B. Zhao, T.J. Zhu, Y. Song, and F.P. Wang, Curr. Appl. Phys. 9, 409 (2009). doi:10.1016/j.cap.2008.03.010.

    Article  Google Scholar 

  13. D. Wang, L. Cheng, Q. Yao, and J. Li, Solid State Commun. 129, 615 (2004). doi:10.1016/j.ssc.2003.11.045.

    Article  CAS  Google Scholar 

  14. Y. Fujine, H. Fujishiro, K. Suzuki, Y. Kashiwada, and M. Ikebe, J. Magn. Magn. Mater. 272–276, 104 (2004). doi:10.1016/j.jmmm.2003.11.045.

    Article  Google Scholar 

  15. C.J. Liu, L.C. Huang, and J.S. Wang, Appl. Phys. Lett. 89, 204102 (2006). doi:10.1063/1.2390666.

    Article  Google Scholar 

  16. Y. Wang, Y. Sui, X. Wang, W. Su, and X. Liu, J. Appl. Phys. 107, 033708 (2010). doi:10.1063/1.3291125.

    Article  Google Scholar 

  17. D. Grebille, S. Lambert, F. Bouree, and V. Petricek, J. Appl. Crystallogr. 37, 823 (2004). doi:10.1107/S0021889804018096.

    Article  CAS  Google Scholar 

  18. C.D. Ling, K. Aivazian, S. Schmid, and P. Jensen, J. Solid State Chem. 180, 1446 (2007). doi:10.1016/j.jssc.2007.02.016.

    Article  CAS  Google Scholar 

  19. M.H. Mueller, W.P. Chernock, and P.A. Beck, Trans. Metall. Soc. AIME 212, 39 (1958).

    Google Scholar 

  20. G. Xu, R. Funahashi, M. Shikano, Q. Pu, and B. Liu, Solid State Commun. 124, 73 (2002). doi:10.1016/S0038-1098(02)00495-7.

    Article  CAS  Google Scholar 

  21. R.D. Shanon, Act. Cryst. A32, 751 (1976). doi:10.1107/S0567739476001551.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Nong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nong, N.V., Yanagiya, S., Monica, S. et al. High-Temperature Thermoelectric and Microstructural Characteristics of Cobalt-Based Oxides with Ga Substituted on the Co-Site. J. Electron. Mater. 40, 716–722 (2011). https://doi.org/10.1007/s11664-011-1524-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-011-1524-1

Keywords

Navigation