Skip to main content
Log in

Thermoelectric Properties of PbTe, SnTe, and GeTe at High Pressure: an Ab Initio Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

In this work we present an ab initio study of the transport properties of PbTe, SnTe, and GeTe crystals in the B1 structure under zero and high pressure and analyze the possibility of pressure-induced thermoelectric performance enhancement. GeTe displays higher thermoelectric coefficients in both the p- and n-doping cases at zero pressure, but with applied pressure they drop quickly. n-Type SnTe has a higher Seebeck coefficient and figure of merit (ZT) than p-type SnTe at ambient conditions. With increased pressure its thermoelectric performance is improved initially and degrades later. The highest ZT appears at about 5 GPa. p-Type PbTe possesses attractive thermoelectric properties at zero pressure. With pressure applied, the ZT of this material undergoes a decline–climb–decline variation, and the optimal ZT occurs at 8 GPa to 10 GPa. Thermoelectric properties of n-type PbTe degrade slightly with increasing pressure and improve later; the improvement can be observed for pressures up to 20 GPa. These results suggest possible enhancement of thermoelectric properties for SnTe under intermediate pressure and PbTe under high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Zheng, Front. Phys. China 3, 269 (2008).

    Article  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2009).

    Article  Google Scholar 

  3. L.Q. Xu, Y.P. Zheng, and J.C. Zheng, Phys. Rev. B 82, 195102 (2010).

    Article  Google Scholar 

  4. Z.Y. Fan, H.Q. Wang, and J.C. Zheng, submitted (2010).

  5. Y. Zhang, X. Ke, C. Chen, J. Yang, and P.R.C. Kent, Phys. Rev. B 80, 024304 (2009).

    Article  Google Scholar 

  6. Y. Gelbstein, O. Ben-Yehuda, E. Pinhas, T. Edrei, Y. Sadia, Z. Dashevsky, and M.P. Dariel, J. Electron. Mater. 38, 1478 (2009).

    Article  CAS  Google Scholar 

  7. T.C. Harman, P.J Taylor., M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  CAS  Google Scholar 

  8. J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts, and R. Venkatasubramanian, Appl. Phys. Lett. 87, 023105 (2005).

    Article  Google Scholar 

  9. L.J. Wu, J.C. Zheng, J. Zhou, Q. Li, J. Yang, and Y. Zhu, J. Appl. Phys. 105, 094317 (2009).

    Article  Google Scholar 

  10. D.M. Freik, M.O. Galushchak, I.M. Ivanishim, V.M. Shperun, R.I. Zapkhlyak, and M.V. Pyts, Semicond. Phys. Quantum Electron. Optoelectron. 3, 287 (2000).

    CAS  Google Scholar 

  11. V.P. Vedeneev, S.P. Krivoruchko, and E.P. Sabo, Semiconductors 32, 241 (1998).

    Article  Google Scholar 

  12. Y. Gelbstein, O. Ben-Yehuda, Z. Dashevsky, and M.P. Dariel, J. Cryst. Growth 311, 4289 (2009).

    Article  CAS  Google Scholar 

  13. C.C. Wu, N.J. Ferng, and H.J. Gau, J. Cryst. Growth 304, 127 (2007).

    Article  CAS  Google Scholar 

  14. L.E. Shelimova, E.S. Avilov, and M.A. Kretova, J. Adv. Mater. 1, 253 (1994).

    Google Scholar 

  15. J. Blair and A.C. Smith, Phys. Rev. Lett. 7, 124 (1961).

    Article  Google Scholar 

  16. Q. Li, Y. Li, T. Cui, Y. Wang, L.J. Zhang, Y. Xie, Y.L. Niu, Y.M. Ma, and G.T. Zou, J. Phys.: Condens. Matter 19, 425224 (2007).

    Article  Google Scholar 

  17. S.V. Ovsyannikov and V.V. Shchennikov, Appl. Phys. Lett. 90, 122103 (2007).

    Article  Google Scholar 

  18. V.V. Shchennikov and S.V. Ovsyannikov, Solid State Commun. 121, 323 (2002).

    Article  CAS  Google Scholar 

  19. P. Zhu, X. Jia, H. Chen, L. Chen, W. Guo, D. Mei, B. Liu, H. Ma, G. Ren, and G. Zou, Chem. Phys. Lett. 359, 89 (2002).

    Article  CAS  Google Scholar 

  20. M.A. McGuire, A.S. Malik, and F.J. DiSalvo, J. Alloys Compd. 460, 8 (2008).

    Article  CAS  Google Scholar 

  21. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology, 2001).

    Google Scholar 

  22. G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  23. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  24. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  25. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  26. E. Engel and S.H. Vosko, Phys. Rev. B 47, 13164 (1993).

    Article  CAS  Google Scholar 

  27. G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).

    Article  CAS  Google Scholar 

  28. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Phys. Rev. B 68, 125210 (2003).

    Article  Google Scholar 

  29. Y. Wang, X. Chen, T. Cui, Y. Niu, Y. Wang, M. Wang, Y. Ma, and G. Zou, Phys. Rev. B 76, 155127 (2007).

    Article  Google Scholar 

  30. J. He, A. Gueguen, J.R. Sootsman, J.C. Zheng, L. Wu, Y. Zhu, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 131, 17828 (2009).

    Article  CAS  Google Scholar 

  31. J. He, J.R. Sootsman, S.N. Girard, J.-C. Zheng, J. Wen, Y. Zhu, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 132, 8669 (2010).

    Article  CAS  Google Scholar 

  32. Y. Gelbstein, Y. Rosenberg, Y. Sadia, and M.P. Dariel, J. Phys. Chem. C 114, 13126 (2010).

    Article  CAS  Google Scholar 

  33. L.E. Shelimova, O.G. Karpinskii, P.P. Konstantinov, M.A. Kretova, E.S. Avilov, and V.S. Zemskov, Inorg. Mater. 37, 421 (2001).

    Article  Google Scholar 

  34. T.C. Harman, D.L. Spears, and M.P. Walsh, J. Electron. Mater. 28, L1 (1999).

    Article  CAS  Google Scholar 

  35. Y. Gelbstein, J. Appl. Phys. 105, 023713 (2009).

    Article  Google Scholar 

  36. A.J. Crocker and L.M. Rogers, Br. J. Appl. Phys. 18, 563 (1967).

    Article  CAS  Google Scholar 

  37. I.A. Chernik, V.I. Kaidanov, M.I. Vinogradova, and N.V. Kolomoets, Sov. Phys. Semicond. 2, 645 (1968).

    Google Scholar 

  38. C.J. Vinies, T.C. Harman, S.D. Calawa, M.P. Walsh, R.E. Reeder, R. Singh, and A. Shakouri, Phys. Rev. B 77, 235202 (2008).

    Article  Google Scholar 

  39. J.R. Sootsman, H. Kong, C. Uher, J.J. D’Angelo, C.I. Wu, T.P. Hogan, T. Caillat, and G. Kanatzidis, Angew. Chem. Int. Ed. 47, 8618 (2008).

    Article  CAS  Google Scholar 

  40. H. Beyer, J. Nurnus, H. Bötner, A. Lambrecht, T. Roch, and G. Bauer, Appl. Phys. Lett. 80, 1216 (2002).

    Article  CAS  Google Scholar 

  41. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  CAS  Google Scholar 

  42. S.V. Ovsyannikov and V.V. Shchennikov, Phys. Status Solidi (b) 241, 3231 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Cheng Zheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Wang, HQ. & Zheng, JC. Thermoelectric Properties of PbTe, SnTe, and GeTe at High Pressure: an Ab Initio Study. J. Electron. Mater. 40, 641–647 (2011). https://doi.org/10.1007/s11664-010-1491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1491-y

Keywords

Navigation