Skip to main content

Advertisement

Log in

Simulation and Optimization for System Integration of a Solar Thermoelectric Device

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We established a three-dimensional (3D) finite-element model of a solar thermoelectric device (STED) based on high-performance thermoelectric materials and carried out performance analysis under different operating conditions. The effects of input energy, natural convection, radiation, contact resistance, and electric load on STED performance are taken into account. It is shown that heat losses and contact resistance have a significant impact on conversion efficiency. If contact resistance and all heat losses are neglected, the total STED efficiency can reach 9.95%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Article  CAS  Google Scholar 

  2. J.R. Sootsman, Y.C. Duck, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  CAS  Google Scholar 

  3. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  Google Scholar 

  4. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T. Hogan, E.K. Polychroniadis, and M.G. Kanatzidis, Science 303, 818 (2004).

    Article  CAS  Google Scholar 

  5. P.F.P. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 45, 3835 (2006).

    Article  CAS  Google Scholar 

  6. J.C. Chen, J. Appl. Phys. 79, 2717 (1996).

    Article  CAS  Google Scholar 

  7. H. Scherrer, L. Vikhor, B. Lenoir, A. Dauscher, and P. Poinas, J. Power Sources 115, 141 (2003).

    Article  CAS  Google Scholar 

  8. S.A. Omer and D.G. Infield, Sol. Energy Mater. Sol. Cells 53, 67 (1998).

    Article  CAS  Google Scholar 

  9. D.T. Crane, D. Kossakovski, and L.E. Bell, J. Electron. Mater. 38, 1382 (2009).

    Article  CAS  Google Scholar 

  10. M.S. El-Genk and H.H. Saber, Energy Convers. Manage. 44, 1069 (2003).

    Article  CAS  Google Scholar 

  11. E.E. Antonova and D.C. Looman, International Conference on Thermoelectrics (2005), p. 200.

  12. ANSYS Release 10.0 Documentation (2005).

  13. P. Li, L.L. Cai, P.C. Zhai, X.F. Tang, Q.J. Zhang, and M. Niino, J. Electron. Mater. 39, 1522 (2010).

    Google Scholar 

  14. S.M. Yang, Heat Transfer-Asian Research 30, 293 (2001).

    Google Scholar 

  15. Q.C. Zhang, Y.B. Yin, and D.R. Mills, Sol. Energy Mater. Sol. Cells 40, 43 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsheng Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, T., Xiao, J., Li, P. et al. Simulation and Optimization for System Integration of a Solar Thermoelectric Device. J. Electron. Mater. 40, 967–973 (2011). https://doi.org/10.1007/s11664-010-1471-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1471-2

Keywords

Navigation