Journal of Electronic Materials

, Volume 40, Issue 5, pp 589–596 | Cite as

Single-Crystal Investigations on Quaternary Clathrates Ba8Cu5Si x Ge41−x (x = 6, 18, 41)

  • X. Yan
  • A. Grytsiv
  • G. Giester
  • E. Bauer
  • P. Rogl
  • S. PaschenEmail author


Type I clathrates have been considered as promising thermoelectric materials due to their special structural characteristics: the “rattling” guest atoms in the larger of the two cages of the clathrate I structure are frequently held responsible for the low lattice thermal conductivity. By single-crystal x-ray diffraction, we investigated the quaternary clathrates Ba8Cu5Si x Ge41−x (x = 6, 18, 41). Rietveld refinements confirmed that the clathrates in this system crystallize with cubic primitive symmetry, in the type I clathrate structure, and that no phase transitions occur in the temperature range investigated (100 K to 300 K). We derive the concentration dependencies of the Debye temperature, the Einstein temperatures, the static disorder parameters, and the size of the two cages and argue that these dependencies underpin the previously assumed different bonding character of the Ba guest atoms in the larger and smaller cages. The linear thermal expansion coefficients for the samples are derived.


Clathrate single-crystal x-ray diffraction cage size thermal expansion coefficient 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.L. Kuznetsov, L.A. Kuznetsova, A.E. Kaliazin, and D.M. Rowe, J. Appl. Phys. 87, 7871 (2000). doi: 10.1063/1.373469.CrossRefGoogle Scholar
  2. 2.
    B.C. Chakoumakos, B.C. Sales, D.G. Mandrus, and G.S. Nolas, J. Alloys. Compd. 296, 80 (2000). doi: 10.1016/S0925-8388(99)00531-9.CrossRefGoogle Scholar
  3. 3.
    J.F. Meng, N.V. Charda Shekar, J.V. Badding, and G.S. Nolas, J. Appl. Phys. 89, 1730 (2001). doi: 10.1063/1.334366.CrossRefGoogle Scholar
  4. 4.
    M.M. Koza, M.R. Johnson, R. Viennois, H. Mutka, L. Girard, and D. Ravot, Nat. Mater. 7, 805 (2008). doi: 10.1038/nmat2260.CrossRefGoogle Scholar
  5. 5.
    M. Christensen, A. Abrahamsen, N. Christensen, F. Juranyi, N. Andersen, K. Lefmann, J. Andreasson, C. Bahl, and B. Iversen, Nat. Mater. 7, 811 (2008). doi: 10.1038/nmat2273.CrossRefGoogle Scholar
  6. 6.
    J. Dong, O.F. Sankey, and C.W. Myles, Phys. Rev. Lett. 86, 2361 (2001). doi: 10.1103/PhysRevLett.86.2361.CrossRefGoogle Scholar
  7. 7.
    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, and G.A. Slack, Phys. Rev. Lett. 82, 779 (1999). doi: 10.1103/PhysRevLett.82.779.CrossRefGoogle Scholar
  8. 8.
    B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, and D. Mandrus, Phys. Rev. B 63, 245113 (2001). doi: 10.1103/PhysRevB.63.245113.CrossRefGoogle Scholar
  9. 9.
    N.P. Blake, S. Latturner, J.D. Bryan, G.D. Stucky, and H. Metiu, J. Chem. Phys. 115, 8060 (2001). doi: 10.1063/1.1397324.CrossRefGoogle Scholar
  10. 10.
    M. Christensen, F. Juranyi, and B.B. Iversen, Phys. B 385–386, 505 (2006). doi: 10.1016/j.physb.2006.05.232.CrossRefGoogle Scholar
  11. 11.
    Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, K. Suekuni, M.A. Avila, and T. Takabatake, J. Phys.: Conf. Ser. 92, 012151 (2007). doi: 10.1088/1742-6596/92/1/012151.CrossRefGoogle Scholar
  12. 12.
    A. Bentien, E. Nishibori, S. Paschen, and B.B. Iversen, Phys. Rev. B 71, 144107 (2005). doi: 10.1103/PhysRevB.71.144107.CrossRefGoogle Scholar
  13. 13.
    K. Kishimoto, N. Ikeda, K. Akai, and T. Koyanagi, Appl. Phys. Exp. 1, 031201 (2008). doi: 10.1143/APEX.1.031201.CrossRefGoogle Scholar
  14. 14.
    C.L. Condron, S.M. Kauzlarich, T. Ikeda, G.J. Snyder, F. Harmann, and P. Jeglic, Inorg. Chim. 47, 8204 (2008). doi: 10.1021/ic800772m.CrossRefGoogle Scholar
  15. 15.
    M. Christensen, S. Johnsen, M. Sondergaard, J. Overgaard, H. Birkedal, and B.B. Iversen, Chem. Mater. 21, 122 (2009). doi: 10.1021/cm802289n.CrossRefGoogle Scholar
  16. 16.
    K. Suekuni, M.A. Avila, K. Umeo, and T. Takabatake, Phys. Rev. B 75, 195201 (2007). doi: 10.1103/PhysRevB.75.195210.CrossRefGoogle Scholar
  17. 17.
    E.N. Nenghabi and C.W. Myles, Phys. Rev. B 77, 205203 (2008). doi: 10.1103/PhysRevB.77.205203.CrossRefGoogle Scholar
  18. 18.
    J. Martin, G.S. Nolas, H. Wang, and J. Wang, J. Appl. Phys. 102, 103719 (2007). doi: 10.1063/1.2817400.CrossRefGoogle Scholar
  19. 19.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, E. Bauer, R. Lackner, E. Royanian, and G. Giester, J. Phys. Soc. Jpn. 77, Suppl. A, 54 (2008). doi:  10.1143/JPSJS.77SA.54.Google Scholar
  20. 20.
    N. Melnychenko-Koblyuk, A. Grytsiv, S. Berger, H. Kaldarar, H. Michor, F. Röhrbacher, E. Royanian, E. Bauer, P. Rogl, H. Schmid, and G. Giester, J. Phys. Condens. Matter 19, 046203 (2007). doi: 10.1088/0953-8984/19/4/046203.CrossRefGoogle Scholar
  21. 21.
    N. Melnychenko-Koblyuk, A. Grytsiv, L. Fornasari, H. Kaldara, H. Michor, F. Röhrbacher, M. Koza, E. Royanian, E. Bauer, P. Rogl, H. Schmid, F. Marabelli, A. Devishvili, M. Doerr, and G. Giester, J. Phys. Condens. Matter 19, 216223 (2007). doi: 10.1088/0953-8984/19/21/216223.CrossRefGoogle Scholar
  22. 22.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B 76, 144118 (2007). doi: 10.1103/PhysRevB.76.144118.CrossRefGoogle Scholar
  23. 23.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, M. Rotter, R. Lackner, E. Bauer, L. Fornasari, F. Marabelli, and G. Giester, Phys. Rev. B Condens. Matter Mater. Phys. 76, 195124/1 (2007). doi: 10.1103/PhysRevB.76.195124.Google Scholar
  24. 24.
    N. Melnychenko-Koblyuk, A. Grytsiv, P. Rogl, H. Schmid, and G. Giester, J. Solid State Chem. 182, 1754 (2009). doi: 10.1016/j.jssc.2009.04.006.CrossRefGoogle Scholar
  25. 25.
    Nonius Kappa CCD Program Package: COLLECT, DEZO, SCALEPACK, SORTAV (Delft, The Netherlands: Nonius, 1998).Google Scholar
  26. 26.
    G.M. Sheldrick, Program for Crystal Structure Refinement (Germany: University of Göttingen, 1997). Windows version by McArdle, Natl. Univ. Ireland, Galway.Google Scholar
  27. 27.
    T. Balic-Zunic and T. Vickovic, J. Appl. Cryst. 29, 305 (1996). doi: 10.1107/S0021889895015081.CrossRefGoogle Scholar
  28. 28.
    G. Cordier and P. Woll, J. Less Common Met. 169, 291 (1991). doi: 10.1016/0022-5088(91)90076-G.CrossRefGoogle Scholar
  29. 29.
    N. Jaussaud, G. Pierre, S. Pechev, B. Chevalier, M. Menetrier, P. Dordor, R. Decourt, G. Goglio, C. Cros, and M. Pouchard, C. R. Chimie 8, 39 (2005). doi: 10.1016/j.crci.2004.12.004.CrossRefGoogle Scholar
  30. 30.
    Ya. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, and H. Noel, J. Phys.:Condens. Matter 14, 7991 (2002). doi: 10.1088/0953-8984/14/34/318.
  31. 31.
    E. Alleno, G. Maillet, O. Rouleau, E. Leroy, C. Godart, W. Carrillo-Cabrera, P. Simon, and Yu. Grin, Chem. Mater. 21, 1485 (2009). doi: 10.1021/cm8028559.Google Scholar
  32. 32.
    L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, W. Assmus, Yu. Grin, and S. Paschen, Dalton Trans. 39, 1071 (2010). doi: 10.1039/b919791p.Google Scholar
  33. 33.
    Y. Li, J. Chi, W. Guo, S. Khandckat, and J.H. Ross Jr, J. Phys. 15, 5535 (2003). doi: 10.1088/0953-8984/15/32/313.Google Scholar
  34. 34.
    X. Yan, G. Giester, E. Bauer, P. Rogl, and S. Paschen, J. Electron. Mater. (2010). doi: 10.1007/s11664-010-1253-x.
  35. 35.
    B.T.M. Willis and A.W. Pryor, Thermal Vibrations in Crystallography (London: Cambridge University Press, 1975).Google Scholar
  36. 36.
    S. Johnsen, A. Bentien, G.K.H. Madsen, M. Nygren, and B.B. Iversen, Phys. Rev. B 76, 245126 (2007). doi:  10.1103/PhysRevB.76.245126.Google Scholar
  37. 37.
    M. Christensen, S. Johnsen, F. Juranyi, and B.B. Iversen, J. Appl. Phys. 105, 073508 (2009). doi: 10.1063/1.3099589.Google Scholar
  38. 38.
    E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, and R. Gladyshevskii, TZPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types (Springer, 1994).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • X. Yan
    • 1
    • 2
  • A. Grytsiv
    • 2
  • G. Giester
    • 3
  • E. Bauer
    • 1
  • P. Rogl
    • 2
  • S. Paschen
    • 1
    Email author
  1. 1.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  2. 2.Institute of Physical ChemistryUniversity of ViennaViennaAustria
  3. 3.Institute of Mineralogy and CrystallographyUniversity of ViennaViennaAustria

Personalised recommendations