Skip to main content
Log in

Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ga-doped ZnO films were prepared at 10 mTorr of oxygen over a broad temperature range using pulsed laser deposition. The carrier concentration of as-deposited films decreased monotonically with deposition temperature over a temperature range of 25°C to 450°C. Post-deposition annealing of as-deposited films in forming gas (5% H2 in argon) or vacuum resulted in a substantial increase in both carrier concentration and electron mobility. The figure of merit was highest for films deposited at 250°C then annealed in forming gas at 400°C. The optical transmittance was near 90% throughout the visible and near-infrared spectral regions. These results indicate that Ga-doped ZnO is a viable alternative to transparent indium-based conductive oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tobias and C. del Canizo, High Efficiency III-V Solar Cells, ed. J. Olson, J. Friedman, S. Kurtz; In Antonio Luque, Steven Hegedus (eds.), Handbook of Photovoltaic Science and Engineering (Wiley, 2003).

  2. L.B. Lockhart Jr. and P. King, J. Opt. Soc. Am. 37, 9 (1947).

    Google Scholar 

  3. A. Lennie, H. Abdullah, S.M. Mustaza, and K. Sopian, Eur. J. Sci. R. 29, 447 (2009).

    Google Scholar 

  4. J. Plá, M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C. Summonte, and F. Rubinelli, Thin Solid Films 425, 185 (2003).

    Article  Google Scholar 

  5. E. Fortunato, L. Raniero, L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L. Pereira, G. Goçalves, I. Ferreira, E. Elangovan, and R. Martins, Sol. Energy Mater. Sol. C 92, 1605 (2008).

    Article  CAS  Google Scholar 

  6. R.G. Gordon, Mater. Res. Bull. 25, 52 (2000).

    CAS  Google Scholar 

  7. M. Oshikiri, Y. Imanaka, F. Aryasetiawan, and G. Kido, Physica B 298, 472 (2001).

    Article  CAS  Google Scholar 

  8. J.C. Lee, K.H. Kang, S.K. Kim, K.H. Yoon, I.J. Park, and J. Song, Sol. Energy Mater. Sol. Cells 64, 185 (2000).

    Article  CAS  Google Scholar 

  9. J.K. Kim, J.M. Lee, J.W. Lim, J.H. Kim, and S.J. Yun, Jpn. J. Appl. Phys. 49, 04DP09 (2010).

    Article  Google Scholar 

  10. L. Raniero, I. Ferreira, A. Pimentel, A. Gonçalves, P. Canhola, E. Fortunato, and R. Martins, Thin Solid Films 511–512, 295 (2006).

    Article  Google Scholar 

  11. S.S. Shinde, P.S. Shinde, C.H. Bhosale, and K.Y. Rajpure, J. Phys. D 41, 105109 (2008).

    Article  Google Scholar 

  12. M.-S. Oh, D.-K. Hwang, D.-J. Seong, H.-S. Hwang, S.-J. Park, and E.D. Kim, J. Electrochem. Soc. 155, D599 (2008).

    Article  CAS  Google Scholar 

  13. C. Gümüs, O.M. Ozkendir, H. Kavak, and Y. Ufuktepe, J. Optoelectron. Adv. Mater. 8, 299 (2006).

    Google Scholar 

  14. V. Khranovskyy, U. Grossner, V. Lazorenko, G. Lashkarev, B.G. Svensson, and R. Yakimova, Superlattices Microstruct. 42, 379 (2007).

    Article  CAS  Google Scholar 

  15. S.-M. Park, T. Ikegami, and K. Ebihara, Jpn. J. Appl. Phys. 44, 8027 (2005).

    Article  CAS  Google Scholar 

  16. Z.-L. Lu, W.-Q. Zou, M.-X. Xu, F.-M. Zhang, and Y.-W. Du, Chin. Phys. Lett. 26, 116102 (2009).

    Article  Google Scholar 

  17. V. Bhosle, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 88, 032106 (2006).

    Article  Google Scholar 

  18. T. Yamada, A. Miyake, H. Makino, N. Yamamoto, and T. Yamamoto, Thin Solid Films 517, 3134 (2009).

    Article  CAS  Google Scholar 

  19. H.H. Shin, Y.H. Joung, and S.J. Kang, J. Mater. Sci. Mater. Electron. 20, 704 (2009).

    Article  CAS  Google Scholar 

  20. H.E. Bennett and W.F. Koehler, J. Opt. Soc. Am. 50, 1 (1960).

    Article  Google Scholar 

  21. S. Wang, X. Li, and J. Zhang, J. Phys. Conf. Ser. 188, 012017 (2009).

    Article  Google Scholar 

  22. X.-Y. Li, H.-J. Li, Z.-J. Wang, H. Xia, Z.-Y. Xiong, J.-X. Wang, and B.-C. Yang, Opt. Commun. 282, 247 (2009).

    Article  CAS  Google Scholar 

  23. B.-Y. Oh, M.-C. Jeong, D.-S. Kim, W. Lee, and J.-M. Myoung, J. Cryst. Growth 281, 475 (2005).

    Article  CAS  Google Scholar 

  24. B.D. Cullity, Elements of X-ray Diffraction, 2nd ed. (Boston, MA: Addison-Wesley, 1978).

    Google Scholar 

  25. Y.F. Li, B. Yao, Y.M. Lu, Y.Q. Gai, C.X. Cong, Z.Z. Zhang, D.X. Zhao, J.Y. Zhang, B.H. Li, D.Z. Shen, X.W. Fan, and Z.K. Tang, J. Appl. Phys. 104, 083516 (2008).

    Article  Google Scholar 

  26. R. Cebulla, R. Wendt, and K. Ellmer, J. Appl. Phys. 83, 1087 (1998).

    Article  CAS  Google Scholar 

  27. M. Chen, Z.L. Pei, C. Sun, L.S. Wen, and X. Wang, J. Cryst. Growth 220, 254 (2000).

    Article  CAS  Google Scholar 

  28. B.-L. Zhu, X.-H. Sun, S.-S. Guo, X.-Z. Zhao, J. Wu, R. Wu, and J. Liu, Jpn. J. Appl. Phys. 45, 7860 (2006).

    Article  CAS  Google Scholar 

  29. Y. Zhao, Y. Jiang, and Y. Fang, J. Cryst. Growth 307, 278 (2007).

    Article  CAS  Google Scholar 

  30. D.C. Look, K.D. Leedy, D.H. Tomich, and B. Bayraktaroglu, Appl. Phys. Lett. 96, 062102 (2010).

    Article  Google Scholar 

  31. P. Erhart and K. Albe, Appl. Phys. Lett. 88, 201918 (2006).

    Article  Google Scholar 

  32. H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, and B.K. Tay, J. Cryst. Growth 268, 596 (2004).

    Article  CAS  Google Scholar 

  33. K. Yim, H.W. Kim, and C. Lee, Mater. Sci. Technol. 23, 108 (2007).

    Article  CAS  Google Scholar 

  34. E. Millon, J. Perriere, S. Tircot, and C. Boulmer-Leborgne, SPIE 7005, 70051A (2008).

    Article  Google Scholar 

  35. J. Ma, F. Ji, D. Zhang, H. Ma, and S. Li, Thin Solid Films 357, 98 (1999).

    Article  CAS  Google Scholar 

  36. B.G. Choi, I.H. Kim, D.H. Kim, K.S. Lee, T.S. Lee, B. Cheong, Y.-J. Baik, and W.M. Kim, J. Eur. Ceram. Soc. 25, 2161 (2005).

    Article  CAS  Google Scholar 

  37. K. Yim and C. Lee, J. Mater. Sci. Mater. Electron. 18, 385 (2007).

    Article  CAS  Google Scholar 

  38. P.Y. Emelie, J.D. Phillips, B. Buller, and U.D. Venkateswaran, J. Electron. Mater. 35, 525 (2006).

    Article  CAS  Google Scholar 

  39. P. Drude, Z. Phys. 1, 161 (1900).

    Google Scholar 

  40. A.V. Singh, R.M. Mehra, N. Buthrath, A. Wakahara, and A. Yoshida, J. Appl. Phys. 90, 5661 (2001).

    Article  CAS  Google Scholar 

  41. O.S. Heavens, Optical Properties of Thin Solid Films (New York: Academic, 1955).

    Google Scholar 

  42. S.G. Tomlin, Br. J. Appl. Phys. 1, 1667 (1968).

    Google Scholar 

  43. J.G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z.Z. Ye, Y.J. Zeng, Y.Z. Zhang, L.P. Zhu, H.P. He, and B.H. Zhao, J. Appl. Phys. 101, 083705 (2007).

    Article  Google Scholar 

  44. J.D. Ye, S.L. Gu, S.M. Zhu, S.M. Liu, Y.D. Zheng, R. Zhang, and Y. Shi, Appl. Phys. Lett. 86, 19211 (2005).

    Google Scholar 

  45. N.R. Aghamalyan, E.A. Kafadaryan, R.K. Hovesepyaon, and S.I. Petrosyan, Semicond. Sci. Technol. 20, 80 (2005).

    Article  CAS  Google Scholar 

  46. K.Y. Cheong, N. Muti, and S.R. Ramanan, Thin Solid Films 410, 142 (2002).

    Article  CAS  Google Scholar 

  47. P.R. Deshamukh, R.J. Deokate, D. Haranth, C.H. Bhosale, and K.Y. Rahpure, J. Phys. D 41, 135404 (2008).

    Article  Google Scholar 

  48. Y.-C. Huang, Z.-Y. Li, L.-W. Weng, W.-Y. Uen, S.-M. Lan, S.-M. Liao, T.-Y. Lin, Y.-H. Huang, J.-W. Chen, T.-N. Yang, and C.-C. Chiang, J. Vac. Sci. Technol. A 27, 1260 (2009).

    Article  CAS  Google Scholar 

  49. S. Liang and X. Bi, J. Appl. Phys. 104, 113533 (2008).

    Article  Google Scholar 

  50. B.-T. Lee, T.-H. Kim, and S.-H. Jeong, J. Phys. D 39, 967 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin C. Scott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, R.C., Leedy, K.D., Bayraktaroglu, B. et al. Influence of Substrate Temperature and Post-Deposition Annealing on Material Properties of Ga-Doped ZnO Prepared by Pulsed Laser Deposition. J. Electron. Mater. 40, 419–428 (2011). https://doi.org/10.1007/s11664-010-1396-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1396-9

Keywords

Navigation