Skip to main content

Advertisement

Log in

Effect of DC Current on the Creep Deformation of Tin

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Impression creep testing of tin was performed in the temperature range of 343 K to 398 K and under a punching stress of 12 MPa to 55 MPa. During the impression test at constant load, a direct electric current in the range of 0 A to 6 A flowed through the punch into the sample, introducing an electromechanical interaction. Steady-state creep was observed under the simultaneous action of the electric current and mechanical stress. The steady-state impression velocity increased with increasing temperature, punching stress, and electric current. A hyperbolic sine relation was used to describe the stress dependence of the steady-state impression velocity for impression creep of tin. The apparent activation energy decreased with increasing electric current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Abtew and G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000).

    Article  Google Scholar 

  2. S.N.G. Chu and J.C.M. Li, J. Mater. Sci. 12, 2200 (1977).

    Article  CAS  ADS  Google Scholar 

  3. S.N.G. Chu and J.C.M. Li, Mater. Sci. Eng. 39, 1 (1979).

    Article  CAS  Google Scholar 

  4. C. Park, X. Long, S. Hoberman, S. Ma, and I. Dutta, J. Mater. Sci. 42, 5182 (2007).

    Article  CAS  ADS  Google Scholar 

  5. F.Q. Yang and L.L. Peng, Mater. Sci. Eng. A 409, 87 (2005).

    Article  Google Scholar 

  6. G. Le Meur, B. Bourouga, and J.P. Bardon, Int. J. Heat Mass Transfer 49, 387 (2006).

    Article  MATH  CAS  Google Scholar 

  7. R.S. Timsit, IEEE Trans. Comp. Hybrids Manuf. Technol. 14, 285 (1991).

    Article  Google Scholar 

  8. R. Chen and F.Q. Yang, J. Phys. D: Appl. Phys. 41, 065404 (2008).

    Article  ADS  Google Scholar 

  9. R. Chen and F.Q. Yang, J. Phys. D: Appl. Phys. 41, 155406 (2008).

    Article  ADS  Google Scholar 

  10. J. Nah, F. Ren, K. Paik, and K.N. Tu, J. Mater. Res. 21, 698 (2006).

    Article  CAS  ADS  Google Scholar 

  11. F. Ren, J.W. Nah, K.N. Tu, B. Xiong, L. Xu, and J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006).

    Article  ADS  Google Scholar 

  12. T.H. Hyde, K.A. Yehia, and A.A. Becker, Int. J. Mech. Sci. 35, 451 (1993).

    Article  Google Scholar 

  13. F.Q. Yang, Int. J. Mech. Sci. 40, 87 (1998).

    Article  MATH  Google Scholar 

  14. F.Q. Yang, J.C.M. Li, and C.W. Shih, Mater. Sci. Eng. A 201, 50 (1995).

    Article  Google Scholar 

  15. F. Garofalo, Trans. Metall. Soc. AIME 227, 351 (1963).

    Google Scholar 

  16. R. Darveaus and K. Banerji, Proceedings of the IEEE Electronic Components Technology Conference ECTC’92 (San Diego, CA, 1992), pp. 538.

  17. F.Q. Yang and J.C.M. Li, Mater. Sci. Eng. A 201, 40 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuqian Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Yang, F. Effect of DC Current on the Creep Deformation of Tin. J. Electron. Mater. 39, 2611–2617 (2010). https://doi.org/10.1007/s11664-010-1355-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1355-5

Keywords

Navigation