Skip to main content
Log in

Study of LDPE/TiO2 and PS/TiO2 Composites as Potential Substrates for Microstrip Patch Antennas

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Low-density polyethylene (LDPE)/titania (TiO2) and polystyrene (PS)/titania (TiO2) composite systems have been developed as alternative substrates for microstrip patch antennas (MPA) for handheld devices. Morphological, thermal, and microwave characterizations of these composites have been conducted for different volume fractions of TiO2 in the polymer matrix. The size of the titania particles was found to be of the order of 0.5 μm, and their distribution in the composite was quite uniform. Composite materials showed an improvement in thermal and microwave properties over the parent polymer. Verification of these composites as potential substrates for MPA was carried out by fabricating simple rectangular patch X-band antennas. Materials with optimized substrate properties were chosen to design the MPA. The patches were designed with 4% volume fraction TiO2 in the LDPE composite system and 6% volume fraction TiO2 in the PS composite system. Return loss of ∼18 dB was observed for both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Fang, D. Linton, C. Walker, B. Collins, M. Lee, and I. Partridge, Proceedings of the 34th European Microwave Conference (Amsterdam, 2004), p. 1221.

  2. P.S. Hall and J.R. James, eds., Handbook of Microstrip Antennas (London: Peter Peregrinus, 1989).

    Google Scholar 

  3. J.B. Donnet, R.C. Bansal, and M.J. Wang, eds., Carbon Black, Science and Technology (Boca Raton, FL: CRC Press, 1983).

    Google Scholar 

  4. J.R. Deka and N.S. Bhattacharyya, Proceedings of the 2nd IASTED International Conference on Antennas, Radar, and Wave Propagat (Banff, AB, Canada, July 19–21, 2005).

  5. M.G. Todd and F.G. Shi, J. Appl. Phys. 94, 4551 (2003).

    Article  CAS  ADS  Google Scholar 

  6. J.R. Deka and N.S. Bhattacharyya, Proceedings of the International Conference on Computers and Devices for Communication (CODEC 04) (January, 2004).

  7. J.I. Hong, L.S. Schadler, R.W. Siegel, and E. Martensson, Appl. Phys. Lett. 82, 1956 (2003).

    Article  CAS  ADS  Google Scholar 

  8. A. Dey, S. De, A. De, and S.K. De, Nanotechnology 15, 1277 (2004).

    Article  CAS  ADS  Google Scholar 

  9. E.K. Sichel, ed., Carbon Black-Polymer Composites: The Physics of Electrically Conducting Composites (New York: Marcel Dekker, 1982).

    Google Scholar 

  10. K.L. Mittal, ed., Silanes and Other Coupling Agents, vol. 2 (Utrecht, The Netherlands: The Adhesion Society, VSP, 2000).

    Google Scholar 

  11. S.J. Monte and G. Sugerman, Polym. Eng. Sci. 24, 1369 (1984).

    Article  CAS  Google Scholar 

  12. D.M. Price and M. Jarratt, Proceedings of the 28th Conference on North American Thermal Analysis Society (Orlando, FL, 2000), p. 579.

  13. J.R. Deka, N.S. Bhattacharyya, and S. Bhattacharyya, IETE Technol. Rev. 22, 425 (2005).

    Google Scholar 

  14. V.R.K. Murthy, S. Sunderam, and B. Viswanathan, Microwave Materials (Delhi: Narosa, 1990).

    Google Scholar 

  15. W.G. Spitzer, R.C. Miller, D.A. Kleinman, and L.E. Howarth, Phys. Rev. 126, 1710 (1962).

    Article  CAS  ADS  Google Scholar 

  16. M.G. Todd and F.G. Shi, IEEE Trans. Compon. Packag. Technol. 26, 667 (2003).

    Article  CAS  Google Scholar 

  17. J.B. Jarvis, R.G. Geyer, J.H. Grosvenor Jr., M.D. Genezic, C.A. Jones, B. Riddle, and C.M. Weil, IEEE Trans. Dielectr. Electr. Insul. 5, 571 (1998).

    Article  Google Scholar 

  18. J. Kulijanin, M. Vučković, and M.I. čomor, Eur. Polym. J. 38, 1659 (2002).

    Article  Google Scholar 

  19. K.G. Budinski and M.K. Budinski, Engineering Materials Properties and Selection (New Delhi: Pearson Prentice Hall, 2006).

    Google Scholar 

  20. B. Sareni, L. Krahenbuhl, A. Beroual, and C. Brosseau, J. Appl. Phys. 80, 4560 (1996).

    Article  CAS  ADS  Google Scholar 

  21. B. Sareni, L. Krahenbuhl, A. Beroual, and C. Brosseau, J. Appl. Phys. 81, 2375 (1997).

    Article  CAS  ADS  Google Scholar 

  22. K.R. Carver and J.W. Mink, IEEE Trans. Antennas Propag. 29, 2 (1981).

    Article  ADS  Google Scholar 

  23. H. Pues and A.V. de Capelle, IEE Proc. H: Microwaves Opt. Antennas 131, 334 (1984).

    Article  ADS  Google Scholar 

  24. D. Bharadwaj, D. Bhatnagar, S. Sancheti, and B. Soni, J. Microwaves Optoelectron. Electromag. Appl. 7, 54 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi S. Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarmah, D., Deka, J.R., Bhattacharyya, S. et al. Study of LDPE/TiO2 and PS/TiO2 Composites as Potential Substrates for Microstrip Patch Antennas. J. Electron. Mater. 39, 2359–2365 (2010). https://doi.org/10.1007/s11664-010-1335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1335-9

Keywords

Navigation