Skip to main content
Log in

Void Growth Behavior in ULSI Cu Interconnections by Grain-Boundary Diffusion Simulation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The behavior of void growth in ultra-large-scale integration Cu interconnections has been investigated by grain-boundary diffusion simulation to confirm the effectiveness of the high-pressure reflow process for suppressing stress-induced voiding. Void growth was simulated by combining stress analysis and atomic flux analysis. The former was calculated by the finite-element method (FEM), and the latter was calculated by an unusual FEM in which grain boundaries were defined as elements. From the results of void growth analysis, we found that voids tend to disappear during the isochronal annealing step and that the void shrinkage rate can be increased by two to three times by applying pressure of 150 MPa compared with normal-pressure annealing. From the simulation results, it can be conjectured that the high-pressure reflow process is effective for eliminating voids in via holes of Cu interconnections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Singer, Semiconductor International November 1997 (1997), pp. 67–70.

  2. P. Gwynne, IBM Research No. 4, 1997 (1997), pp. 17–22.

  3. A.E. Braun, Semiconductor International April 1999 (1999), pp. 58–66.

  4. B. Li, T.D. Sullivan, T.C. Lee, and D. Badami, Microelectron. Reliab. 44, 365 (2004).

    Article  CAS  Google Scholar 

  5. K. Abe, Y. Harada, M. Yoshimaru, and H. Onoda, J. Vac. Sci. Technol. B 22, 721 (2004).

    Article  CAS  Google Scholar 

  6. T.C. Wang, T.E. Hsieh, M.T. Wang, D.S. Su, C.H. Chang, Y.L. Wang, and J.Y. Lee, J. Electrochem. Soc. 152, G45 (2005).

    Article  CAS  Google Scholar 

  7. M.H. Lin, Y.L. Lin, K.P. Chang, K.C. Su, and T. Wang, Jpn. J. Appl. Phys. 45, 700 (2006).

    Article  CAS  ADS  Google Scholar 

  8. H. Tsuchikawa, Y. Mizushima, T. Nakamura, T. Suzuki, and H. Nakajima, Jpn. J. Appl. Phys. 45, 714 (2006).

    Article  CAS  ADS  Google Scholar 

  9. T. Ohshima, K. Hinode, H. Yamaguchi, H. Aoki, K. Torii, T. Saito, K. Ishikawa, J. Noguchi, M. Fukui, T. Nakamura, S. Uno, K. Tsugane, J. Murata, K. Kikushima, H. Sekisaka, E. Murakami, K. Okuyama, and T. Iwasaki, Proceedings of the 2002 IEEE International Electron Devices Meeting (San Francisco, 2002), pp. 757–760.

  10. K. Yoshida, T. Fujimaki, K. Miyamoto, T. Honma, H. Kaneko, H. Nakazawa, and M. Morita, Proceedings of the 2002 IEEE International Electron Devices Meeting (San Francisco, 2002), pp. 753–756.

  11. M. Ueki, M. Hiroi, N. Ikarashi, T. Onoda, N. Furutake, M. Yoshiki, and Y. Hayashi, Proceedings of the 2002 IEEE International Electron Devices Meeting (San Francisco, 2002), pp. 749–752.

  12. E.T. Ogawa, J.W. McPherson, J.A. Rosal, K.J. Dickersn, T.C. Chiu, L.Y. Tsung, M.K. Jain, T.D. Bonifield, J.C. Ondrusek, and W.R. McKee, Proceedings of the IEEE 40th Annual International Reliability Physics Symposium (Dallas, TX, 2002), pp. 312–321.

  13. M. Moriyama, S. Konishi, S. Tsukimoto, and M. Murakami, Mater. Trans. 45, 3172 (2004).

    Article  CAS  Google Scholar 

  14. S. Konishi, M. Moriyama, and M. Murakami, Mater. Trans. 43, 1624 (2002).

    Article  CAS  Google Scholar 

  15. A. Sekiguchi, J. Koike, S. Kamiya, M. Saka, and K. Maruyama, Appl. Phys. Lett. 79, 1264 (2001).

    Article  CAS  ADS  Google Scholar 

  16. A. Hobbs, S. Murakami, T. Hosoda, S. Ohtsuka, M. Miyajima, S. Sugatani, and T. Makamura, Mater. Trans. 43, 1629 (2002).

    Article  CAS  Google Scholar 

  17. T. Fujikawa, K. Suzuki, T. Masui, and T. Onishi, Advanced Metallization Conference, 1999, ed. M.E. Gross, T. Gessner, N. Kobayashi, and Y. Yasuda (Warrendale, PA: Materials Research Society, 1999), pp. 105–108.

  18. K. Suzuki, T. Masui, T. Fujikawa, Y. Taguchi, and T. Kondo, Advanced Metallization Conference, 1999, ed. M.E. Gross, T. Gessner, N. Kobayashi, and Y. Yasuda (Warrendale, PA: Materials Research Society, 1999), pp. 155–160.

  19. T. Fujikawa, T. Onishi, and T. Sato, Jpn. J. Appl. Phys. 40, 2191 (2001).

    Article  CAS  ADS  Google Scholar 

  20. T. Onishi, H. Fujii, J. Munemasa, and T. Yoshikawa, Advanced Metallization Conference Asian Session 2001, ed. A.J. McKerrow, Y. Shacham-Diamond, S. Zaima, and T. Ohba (Warrendale, PA: Materials Research Society, 2001), pp. 245–250.

  21. T. Onishi and T. Yoshikawa, Mater. Trans. 43, 1605 (2002).

    Article  CAS  Google Scholar 

  22. T. Onishi, H. Fujii, T. Yoshikawa, J. Munemasa, T. Inoue, and A. Miyagaki, Thin Solid Films 425, 265 (2003).

    Article  CAS  ADS  Google Scholar 

  23. P.G. Shewmon, Diffusion in Solids (New York: McGraw-Hill, 1963).

    Google Scholar 

  24. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  ADS  Google Scholar 

  25. A.C.F. Cooks, Appl. Solid Mech. 3, 30 (1989).

    Google Scholar 

  26. A.C.F. Cooks and A.A. Searle, Mech. Mater. 12, 279 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to Professor T. Kitamura at Kyoto University for his useful advice and providing the calculation software for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Onishi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onishi, T., Mizuno, M., Yoshikawa, T. et al. Void Growth Behavior in ULSI Cu Interconnections by Grain-Boundary Diffusion Simulation. J. Electron. Mater. 39, 2255–2266 (2010). https://doi.org/10.1007/s11664-010-1311-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1311-4

Keywords

Navigation