Skip to main content
Log in

Effect of Ionic Radius and Resultant Two-Dimensionality of Phonons on Thermal Conductivity in M x CoO2 (M = Li, Na, K) by Perturbed Molecular Dynamics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Phonon thermal conductivity calculations for Li x CoO2, Na x CoO2, and K x CoO2 (x = 1, 0.5) have been carried out by perturbed molecular dynamics to clarify the dependence of thermal conductivity on alkali-metal vacancy concentration in these materials. While thermal conductivity decreased for all compounds upon introduction of alkali-metal vacancies, the magnitude of the decrease is strongly dependent on the size of the alkali-metal ion. Further numerical analyses using fictitious physical parameters reveal that, with increasing ionic radius, the two-dimensionality of the phonons in the CoO2 layers, which are responsible for overall thermal conductivity, is enhanced, resulting in lower thermal conductivity in vacancy-free compounds as well as ineffectiveness of alkali-metal vacancies in lowering thermal conductivity. In contrast, for systems with smaller alkali-metal ionic radius, even though higher thermal conductivity is predicted when no vacancies are present, vacancies are quite effective in significantly lowering thermal conductivity by modifying phonon states in the CoO2 layers, more so than in systems with larger alkali-metal vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. 40, 4644 (2001).

    Article  CAS  ADS  Google Scholar 

  2. T. Takeuchi, Mater. Trans. 50, 2359 (2009).

    Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nature 7, 105 (2008).

    Article  CAS  Google Scholar 

  4. I. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  CAS  ADS  Google Scholar 

  5. T. Kawata, Y. Iguchi, T. Itoh, K. Takahata, and I. Terasaki, Phys. Rev. B 60, 10584 (1999).

    Article  CAS  ADS  Google Scholar 

  6. W. Koshibae, K. Tsutsui, and S. Maekawa, Phys. Rev. B 62, 6869 (2000).

    Article  CAS  ADS  Google Scholar 

  7. S. Kuno, T. Takeuchi, H. Ikuta, T. Kondo, A. Kamisaki, Y. Saito, and S. Fujimori, Proc. ICT 2007, 99 (2007).

    Google Scholar 

  8. Y.S. Meng, A. Van der Ven, M.K.Y. Chan, and G. Ceder, Phys. Rev. B 72, 172103 (2005).

    Article  ADS  Google Scholar 

  9. M.N. Iliev, A.P. Litvinchuk, R.L. Meng, Y.Y. Sun, J. Cmaidalka, and C.W. Chu, Physica C 402, 239 (2004).

    Article  CAS  ADS  Google Scholar 

  10. R. Venkatasubramanian, E. Silvola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  11. T.C. Harman, P.J. Taylor, M.P. Walsh, and B.E. LaForge, Science 297, 2229 (2002).

    Article  CAS  ADS  PubMed  Google Scholar 

  12. A. Majumdar, Science 303, 777 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, and Z. Ren, Science 320, 634 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  14. M. Yoshiya, A. Harada, M. Takeuchi, K. Matsunaga, and H. Matsubara, Mol. Simulat. 30, 953 (2004).

    Article  MATH  CAS  Google Scholar 

  15. J.H. Irving and J.G. Kirkwood, J. Chem. Phys. 18, 817 (1950).

    Article  CAS  MathSciNet  ADS  Google Scholar 

  16. Q. Huang, M.L. Hoo, J.W. Lynn, H.W. Zandbergen, G. Lawes, Y. Wang, B.H. Toby, A.P. Ramirez, N.P. Ong, and R.J. Cava, J. Phys.: Condens. Matter 16, 5803 (2004).

    Article  CAS  ADS  Google Scholar 

  17. Y. Takahashi, Y. Gotoh, and J. Akimoto, J. Solid State Chem. 172, 22 (2003).

    Article  CAS  ADS  Google Scholar 

  18. K.-W. Lee, J. Kuneš, P. Novak, and W.E. Pickett, Phys. Rev. Lett. 94, 026403 (2005).

    Article  ADS  PubMed  Google Scholar 

  19. R. Ray, A. Ghoshray, and K. Ghoshray, Phys. Rev. B 59, 9454 (1999).

    Article  CAS  ADS  Google Scholar 

  20. A. Chainani, T. Yokoya, Y. Takata, K. Tamasaku, M. Taguchi, T. Shimojima, N. Kamakura, K. Horiba, S. Tsuda, S. Shin, D. Miwa, Y. Nishino, T. Ishikawa, M. Yabashi, K. Kobayashi, H. Namatame, M. Taniguchi, K. Takada, T. Sasaki, H. Sakurai, and E. Takayama-Muromachi, Nucl. Inst. Methods Phys. Res. A 547, 163 (2005).

    Article  CAS  ADS  Google Scholar 

  21. T. Kroll, M. Knupfer, J. Geck, C. Hess, T. Schwieger, G. Krabbes, C. Sekar, D.R. Batchelor, H. Berger, and B. Büchner, Phys. Rev. B 74, 115123 (2006).

    Article  ADS  Google Scholar 

  22. T. Kroll, A.A. Aligia, and G.A. Sawatzky, Phys. Rev. B 74, 115124 (2006).

    Article  ADS  Google Scholar 

  23. R.D. Shannon and C.T. Prewitt, Acta Cryst. B 25, 925 (1969).

    Google Scholar 

  24. R.D. Shannon, Acta. Cryst. A 32, 751 (1976).

    Google Scholar 

  25. M. Tada, M. Yoshiya, and H. Yasuda, Trans. Mater. Res. Soc. Jpn. 35, 205 (2010).

    Google Scholar 

  26. M. Lee, L. Viciu, L. Li, Y. Wang, M.L. Foo, S. Watauchi, R.A. Pascal Jr, R.J. Cava, and N.P. Ong, Nat. Mater. 5, 537 (2006).

    Article  CAS  ADS  PubMed  Google Scholar 

  27. M. Tada, M. Yoshiya, T. Nagira, and H. Yasuda, in preparation.

  28. K. Takahata and I. Terasaki, Jpn. J. Appl. Phys. 41, 763 (2002).

    Article  CAS  ADS  Google Scholar 

  29. S. Tamura and Y. Tanaka, Phys. Rev. B 60, 2627 (1999).

    Article  CAS  ADS  Google Scholar 

  30. M. Isobe, M. Arai, T. Kawashima, and E. Takayama- Muromachi, Physica C 469, 948 (2009).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Tada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tada, M., Yoshiya, M. & Yasuda, H. Effect of Ionic Radius and Resultant Two-Dimensionality of Phonons on Thermal Conductivity in M x CoO2 (M = Li, Na, K) by Perturbed Molecular Dynamics. J. Electron. Mater. 39, 1439–1445 (2010). https://doi.org/10.1007/s11664-010-1309-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1309-y

Keywords

Navigation