Skip to main content
Log in

Fabrication of Thermoelectric Devices by Applying Microsystems Technology

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Microsystems technologies were applied in the fabrication of thermoelectric (TE) microconverters. Common techniques used in microelectromechanical systems (MEMS) fabrication, namely wet etching, lift-off (with SU-8 photoresist), reactive ion etching (RIE), and lithography-electroplating-molding, were compared in the fabrication process of TE microsystems based on Bi, Sb, and Te thin-film compounds. Thin films of bismuth and antimony tellurides were deposited by co-evaporation, with figures of merit comparable to those of bulk materials. Test structures were fabricated using lithography and wet etching. The etching recipe was optimized by varying the etchant dilution and composition until higher etch rates and desired material selectivity were attained. Since the etching process is applied after deposition, this process allows prior deposition of TE materials by any deposition method; thus, films with high figure of merit can be fabricated. Moreover, wet etching does not require the use of expensive equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O’Quinn, Nature 413, 597 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  2. D.M. Rowe, eds., CRC Handbook of Thermoelectrics—Macro to Nano (London: CRC, 2005).

    Google Scholar 

  3. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1 (2007).

    Article  Google Scholar 

  4. L.W. Silva and M. Kaviany, ASME Proc. of IMECE’02, New Orleans, USA, Nov (2002), pp. 17–22.

  5. H. Zou, D.M. Rowe, and S.G.K. Williams, Thin Solid Films 408, 270 (2002).

    Article  CAS  ADS  Google Scholar 

  6. L.W. da Silva, M. Kaviany, and C. Uher, J. Appl. Phys. 97, 114903 (2005).

    Article  ADS  Google Scholar 

  7. L.M. Goncalves, J.G. Rocha, C. Couto, P. Alpuim, G. Min, D.M. Rowe, and J.H. Correia, J. Microelectromech. Syst. 17, S168 (2007).

    Google Scholar 

  8. D.-h. Kim, E. Byon, G.-H. Lee, and S. Cho, Thin Solid Films 510, 148 (2005).

    Article  ADS  Google Scholar 

  9. H. Böttner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, and K.H. Schlereth, J. Microelectromech. Syst. 13, 414 (2004).

    Article  Google Scholar 

  10. L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Völklein, and J.H. Correia, Thin Solid Films 518, 2816 (2010).

    Google Scholar 

  11. G. Jeffrey Snyder, J.R. Lim, C.-k. Huang, and J.-P. Fleurial, Nat. Mater. 2, 528 (2003).

    Article  ADS  PubMed  Google Scholar 

  12. H. Scherrer and S. Scherrer, CRC Handbook of Thermoelectrics, ed. D.M. Rowe (1987), pp. 211–237.

  13. L.W. da Silva and M. Kaviany, J. Microelectromech. Syst. 14, 1110 (2005).

    Article  Google Scholar 

  14. C. Shafai and M.J. Brett, J. Vacuum Sci. Technol. A 17-1, 305 (2001).

    Google Scholar 

  15. S. Sedky, A. Kamal, M. Yomn, H. Bakr, R. Ghannam, V. Leonov, and P. Fiorini, Proc. International Conference Transducers 09, Denver, CO, USA (2009).

  16. L.M. Goncalves, C. Couto, P. Alpuim, and J.H. Correia, J. Microelectromech. Syst. 18, 064008 (2008).

    Google Scholar 

  17. J.R. Lim, G.J. Snyder, C.-K. Huang, J.A. Herman, M.A. Ryanand, and I.-P. Fleurial, Proc. International Conference on Thermoelectrics (2002).

  18. A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, and A. Boyer, Mater. Sci. Eng. B 64, 19 (1999).

    Article  Google Scholar 

  19. A. Giani, F. Pascal-Delannoy, A. Foucaran, and A. Boyer, Thin Solid Films 303, 1 (1997).

    Article  CAS  ADS  Google Scholar 

  20. A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Foucaran, and A. Boyer, J. Cryst. Growth 194, 336 (1998).

    Article  CAS  ADS  Google Scholar 

  21. F. Völklein, V. Baier, U. Dillner, and E. Kessler, Thin Solid Films 187, 253 (1990).

    Article  Google Scholar 

  22. A. Foucaran, A. Sackda, A. Giani, F. Pascal-Delannoy, and A. Boyer, Mater. Sci. Eng. B 52, 154 (1998).

    Article  Google Scholar 

  23. E. Kessler, A. Ihring, V. Baier, A. Franke, and U. Dillner, Proceedings of 11th International Conference Sensor 2003, Vol. II, Nürnberg (2003), pp. 249–254.

  24. M. Stordeur and I. Stark, IEEE Proc. 16th Int. Conf. on Thermoelectrics, Dresden, Germany (1997), p. 575.

  25. D. Kim, E. Byon, G. Lee, and S. Cho, Thin Solid Films 510, 148 (2006).

    Article  CAS  ADS  Google Scholar 

  26. H. Zou, D.M. Rowe, and G. Min, J. Cryst. Growth 222, 82 (2001).

    Article  CAS  ADS  Google Scholar 

  27. H. Bottner, J. Nurnus, A. Schubert, and F. Volkert, Proc. International Conference on Thermoelectrics ICT’07, Korea (2007).

Download references

Acknowledgement

This work was supported by FCT/PTDC/EEA-ENE/66855/2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Goncalves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncalves, L.M., Alpuim, P. & Correia, J.H. Fabrication of Thermoelectric Devices by Applying Microsystems Technology. J. Electron. Mater. 39, 1516–1521 (2010). https://doi.org/10.1007/s11664-010-1287-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1287-0

Keywords

Navigation