Skip to main content
Log in

Study of Surface Treatments on InAs/GaSb Superlattice LWIR Detectors

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the comparison of mesa sidewall profiles of InAs/GaSb strained-layer superlattice (SLS) detector structures (λ 50% cutoff ≈ 14 μm at V bias = 0 V and T = 30 K) obtained after (a) a conventional BCl3-based inductively coupled plasma etch, (b) a chemical etch (H2O2:HCl:H2O, 1:1:4), and (c) a combination of both etches. We found that the smoothest sidewall profile with reasonable undercut (~5 μm) was obtained after chemical etch only. The chemical etch was optimized primarily using an n-type GaSb substrate. During this process, numerous chemical etchants were examined. GaSb n-type substrates were chosen for this study in preference over InAs substrates due to their high chemical reactivity and the complicated composition of the native oxide. In addition, SLS detectors are usually grown on GaSb substrates and, after hybridization of the focal-plane array to the readout integrated circuit, the GaSb substrate is etched away using a combination of wet and dry etching techniques. We found that H2O2:HCl:H2O (1:1:4) etching solution provided the smoothest etched surface of GaSb, with a root-mean-square roughness of 1.59 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Shterengas, G. Belenky, M.V. Kisin, and D. Donetsky, Appl. Phys. Lett. 90, 011119 (2007).

    Article  ADS  Google Scholar 

  2. M. Grau, C. Lin, O. Dier, C. Lauer, and M.-C. Amann, Appl. Phys. Lett. 87, 241104 (2007).

    Article  ADS  Google Scholar 

  3. K. Qiu, A.C.S. Hayden, M.G. Mauk, and O.V. Sulima, Sol. Energy Mater. Sol. C 90, 68 (2006).

    Article  CAS  Google Scholar 

  4. D. McMorrow, R. Magno, A.S. Bracker, B.R. Bennett, S. Buchner, and J.S. Melinger, IEEE Trans. Nucl. Sci. 48, 1973 (2001).

    Article  CAS  ADS  Google Scholar 

  5. P.V.V. Jayaweera, S.G. Matsik, A.G.U. Perera, Y. Paltiel, A. Sher, A. Raizman, H. Luo, and H.C. Liu, Appl. Phys. Lett. 90, 111109 (2007).

    Article  ADS  Google Scholar 

  6. Y. Sharabani, Y. Paltiel, A. Sher, A. Raizman, and A. Zussman, Appl. Phys. Lett. 90, 232106 (2007).

    Article  ADS  Google Scholar 

  7. R. Tsu, L. Esaki, and B.A. Sai-Halasz, Appl. Phys. Lett. 30, 651 (1977).

    Article  ADS  Google Scholar 

  8. D.L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987).

    Article  CAS  ADS  Google Scholar 

  9. C.A. Hoffman, E.R. Youngblade, J.R. Meyer, P.M. Young, F.J. Bartoli, C.H. Grein, R.H. Miles, D.H. Chow, and H. Ehrenreich, Appl. Phys. Lett. 64, 3160 (1994).

    Article  ADS  Google Scholar 

  10. A.P. Ongstad, R. Kaspi, C.E. Moeller, M.L. Tilton, D.M. Gianardi, J.R. Chavez, and G.C. Dente, J. Appl. Phys. 89, 2185 (2001).

    Article  CAS  ADS  Google Scholar 

  11. G.P. Schwartz, Thin Solid Films 103, 3 (1983).

    Article  CAS  ADS  Google Scholar 

  12. P.S. Dutta, H.L. Bhat, and V. Kumar, Appl. Phys. Rev. 81, 5821 (1997).

    Article  CAS  ADS  Google Scholar 

  13. G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, Phys. Rev. B 49, 11159 (1994).

    Article  CAS  ADS  Google Scholar 

  14. T. Wada and N. Kitamura, Jpn. J. Appl. Phys. 27, 686 (1988).

    Article  CAS  ADS  Google Scholar 

  15. G.P. Schwartz, G.J. Gualtieri, J.E. Griffiths, C.D. Thurmond, and B. Schwartz, J. Electrochem. Soc. 127, 2488 (1980).

    Article  CAS  Google Scholar 

  16. E.K. Huang, B.-M. Nguyen, D. Hoffman, P.-Y. Delaunay, and M. Razeghi, Proc. SPIE 7222, 72220Z (2009).

    Article  Google Scholar 

  17. R. Rehm, M. Walther, J. Schmitz, J. Fleißner, F. Fuchs, J. Ziegler, and W. Cabanski, Opt. Electron. Rev. 14, 19 (2006).

    Article  CAS  ADS  Google Scholar 

  18. E.K.W. Huang, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 94, 053506 (2009).

    Article  ADS  Google Scholar 

  19. J.W. Lee, W.T. Lim, I.K. Baek, S.R. Yoo, M.H. Jeon, G.S. Cho, and S.J. Peatron, J. Electron. Mater. 33, 358 (2004).

    Article  CAS  ADS  Google Scholar 

  20. I. Vurgaftman, E.H. Aifer, C.L. Canedy, J.G. Tischler, J.R. Meyer, J.H. Warner, E.M. Jackson, G. Hildebrandt, and G.J. Sullivan, Appl. Phys. Lett. 89, 121114 (2006).

    Article  ADS  Google Scholar 

  21. B.M. Nguyen, D. Hoffman, E.K. Huang, P.-Y. Delaunay, and M. Razeghi, Appl. Phys. Lett. 93, 123502 (2006).

    Article  ADS  Google Scholar 

  22. M. Kodama, J. Hasegawa, and M. Kimata, J. Electrochem. Soc. 132, 659 (1985).

    Article  CAS  Google Scholar 

  23. I.E. Berishev, F. Da Anda, V.A. Mishournyi, J. Olvera, N.D. Ilyinskaya, and V.I. Vasilyev, J. Electrochem. Soc. 142, L189 (1995).

    Article  CAS  Google Scholar 

  24. J.W. Faust, Jr., Compound Semiconductors, Preparation of IIIV Compounds, Vol. 1, Chap. 50, ed. R.K. Willardson and H.L. Goering (London: Chapman and Hall, 1962), p. 445.

  25. T. Nishinaga, P. Ge, C. Huo, J. He, and T. Nakamura, J. Cryst. Growth 174, 96 (1997).

    Article  CAS  ADS  Google Scholar 

  26. J.A. Godines, F. de Anda, A. Canales, L. Banos, and D. Rios-Jara, J. Electrochem. Soc. 141, 2220 (1994).

    Article  CAS  ADS  Google Scholar 

  27. E. Papis-Polakowska, Electron. Technol. Internet J. 37–38, 1 (2005–2006).

  28. M. Kodama, Phys. Status Solidi A 141, 145 (2006).

    ADS  Google Scholar 

  29. J.G. Buglass, T.D. McLean, and D.G. Parker, J. Electrochem. Soc.: Solid State Sci. Technol. 133, 2566 (1986).

    Google Scholar 

  30. D.K. Johnstone, Y.K. Yeo, R.L. Hengehold, and G.W. Turner, Appl. Phys. Lett. 75, 2779 (1999).

    Article  CAS  ADS  Google Scholar 

  31. C. Heinz, Int. J. Electron. 75, 285 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by AFRL FA9453-07-C-0171, AFOSR FA9550-09-1-0231, and KRISS-GRL Program. We acknowledge use of the focused ion beam SEM system supported by NSF Grant CBET 0723224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Kutty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutty, M.N., Plis, E., Khoshakhlagh, A. et al. Study of Surface Treatments on InAs/GaSb Superlattice LWIR Detectors. J. Electron. Mater. 39, 2203–2209 (2010). https://doi.org/10.1007/s11664-010-1242-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1242-0

Keywords

Navigation