Skip to main content
Log in

MWIR and LWIR HgCdTe Infrared Detectors Operated with Reduced Cooling Requirements

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

In this work, we analyze Auger suppression in HgCdTe alloy-based device structures and determine the operation temperature improvements expected when Auger suppression occurs. We identified critical material (absorber dopant concentration and minority-carrier lifetime) requirements that must be satisfied for optimal performance characteristics. Calculated detectivity values of Auger-suppressed and standard double-layer planar heterostructure (DLPH) devices demonstrate consistently higher maximum background-limited temperatures over a range of cutoff wavelengths and generally higher detectivity values achieved by Auger-suppressed detectors. Furthermore, these devices can operate with comparable performance at up to 100 K higher than DLPH detectors operating at reference temperatures above 100 K. Results of these simulations demonstrate that Auger-suppressed detectors provide a significant advantage over DLPH devices for high-temperature operation and are a viable candidate for thermoelectrically cooled detectors. Experimental dark current–voltage (IV) characteristics between 120 K and 300 K were fitted using numerical simulations. By fitting the temperature-dependent IV experimental data, we determined that the observed negative differential resistance (NDR) is due to Auger suppression. More specifically, NDR is attributed to full suppression of Auger-1 processes and partial (~70%) suppression of Auger-7 processes. After Auger suppression, the remaining leakage current is principally limited by the Shockley–Read–Hall recombination component. Part of the leakage current is also due to a residual Auger-7 current in the absorber due to the extrinsic p-type doping level. Analysis and comparison of our theoretical and experimental device results in structures where Auger suppression was realized are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C.T. Elliott and T. Ashley, Electron. Lett. 21, 451 (1985).

    Article  ADS  Google Scholar 

  2. H.F. Schaake, M.A. Kinch, D. Chandra, F. Aqariden, P.K. Liao, D.F. Weirauch, C.F. Wan, R.E. Scritchfield, W.W. Sullivan, J.T. Teherani, and H.D. Shih, J. Electron. Mater. 37, 1401 (2008).

    Article  CAS  ADS  Google Scholar 

  3. T.J. De Lyon, J.E. Jensen, I. Kasai, G.M. Venzor, K. Kosai, J.B. De Bruin, and W.L. Ahlgren, J. Electron. Mater. 31, 220 (2002).

    Article  ADS  Google Scholar 

  4. P.Y. Emelie, J.D. Phillips, S. Velicu, and C.H. Grein, J. Electron. Mater. 36, 846 (2007).

    Article  CAS  ADS  Google Scholar 

  5. M. Kinch, J. Electron. Mater. 29, 809 (2000).

    Article  CAS  ADS  Google Scholar 

  6. G.M. Williams and R.E. De Wames, J. Electron. Mater. 24, 1239 (1995).

    Article  CAS  ADS  Google Scholar 

  7. J. Piotrowski, A. Jozwikowska, K. Jozwikowski, and R. Ciupa, Infrared Phys. 34, 565 (1993).

    Article  CAS  ADS  Google Scholar 

  8. E. Bellotti and D. D’Orsogna, IEEE J. Quantum Electron. 42, 418 (2006).

    Article  CAS  ADS  Google Scholar 

  9. C.T. Elliott, N.T. Gordon, R.S. Hall, and T.J. Phillips, J. Electron. Mater. 26, 643 (1997).

    Article  CAS  ADS  Google Scholar 

  10. M. Kinch, C. Wan, and J.D. Beck, J. Electron. Mater. 34, 928 (2005).

    Article  CAS  ADS  Google Scholar 

  11. Sentaurus Device (Mountain View, CA: Synopsys, 2005).

  12. Sentaurus Structure Editor (Mountain View, CA: Synopsys, 2005).

  13. R.E. Bank and D.J. Rose, Numer. Math. 37, 279 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  14. R.E. Bank, D.J. Rose, and W. Fichtner, IEEE Trans. Electron. Dev. 30, 1031 (1983).

    Article  ADS  Google Scholar 

  15. J. Wenus, J. Rutkowski, and A. Rogalski, IEEE Trans. Electron. Dev. 48, 1326 (2001).

    Article  CAS  ADS  Google Scholar 

  16. T.N. Casselman and P.E. Petersen, Solid State Commun. 33, 615 (1980).

    Article  CAS  ADS  Google Scholar 

  17. G.L. Hansen, J.L. Schmidt, and T.N. Casselman, J. Appl. Phys. 53, 7099 (1982).

    Article  CAS  ADS  Google Scholar 

  18. W. Scott, J. Appl. Phys. 43, 1055 (1972).

    Article  CAS  ADS  Google Scholar 

  19. V. Ariel and G. Bahir, J. Electron. Mater. 26, 673 (1997).

    Article  CAS  ADS  Google Scholar 

  20. N.H. Joo, S.D. Yoo, B.G. Ko, S.W. Lee, J. Jang, S.D. Lee, and K.D. Kwack, Proc. SPIE 3436, 50 (1998).

    Article  ADS  Google Scholar 

  21. D.H. Mao, H.G. Robinson, D.U. Bartholomew, and C.R. Helms, J. Electron. Mater. 26, 678 (1997).

    Article  CAS  ADS  Google Scholar 

  22. Z.J. Quan, G.B. Chen, L.Z. Sun, Z.H. Ye, Z.F. Li, and W. Lu, Infrared Phys. Technol. 50, 1 (2007).

    Article  CAS  ADS  Google Scholar 

  23. R.L. Anderson, Solid State Electron. 26, 65 (1983).

    Article  Google Scholar 

  24. P.S. Wijewarnasuriya, P.Y. Emelie, A. D’Souza, G. Brill, M.G. Stapelbroek, S. Velicu, Y. Chen, C.H. Grein, S. Sivananthan, and N.K. Dhar, J. Electron. Mater. 37, 1283 (2008).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful for support from the U.S. Army under SBIR Contract W911QX-08-C-0106.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Velicu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velicu, S., Grein, C., Emelie, P. et al. MWIR and LWIR HgCdTe Infrared Detectors Operated with Reduced Cooling Requirements. J. Electron. Mater. 39, 873–881 (2010). https://doi.org/10.1007/s11664-010-1218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1218-0

Keywords

Navigation