Skip to main content
Log in

Electrical Conductivity of Graphene Composites with In and In-Ga Alloy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Samples of composites of graphene with indium or indium-gallium alloy as the matrix were prepared by a process of spreading exfoliated graphene oxide on the foils, repeatedly folding and rolling. The foils were intermittently annealed and the process repeated by addition of more graphene oxide. Indium flux was used to remove any indium or gallium oxide. The samples were characterized by x-ray diffraction, and optical and scanning electron microscopy (SEM). Electrical resistivity and temperature coefficient of resistance (TCR) were measured using a four-probe method in the temperature range of 260 K to 340 K, and the results were used to determine the volume fraction of graphene from effective mean-field analysis. The volume fraction of graphene remained between 0.11 and 0.14 in samples of In with graphene and between 0.12 and 0.13 in samples of In-Ga with graphene. The results indicate that the electrical resistivity and the TCR of the composite were reduced by the addition of graphene. The resistivity of graphene remained between 1.19 × 10−6 ohm cm and 1.87 × 10−6 ohm cm in all samples and was thus almost independent of the matrix composition. The electrical resistivity of graphene was found to be an order of magnitude smaller than that of indium or the indium-gallium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kovacik and J. Bielel, Scr. Mater. 35, 151 (1996).

    Article  CAS  Google Scholar 

  2. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff, Nature 442, 282 (2006).

    Article  PubMed  ADS  CAS  Google Scholar 

  3. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahn, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  4. K. Saito, J. Nakamura, and A. Natori, Phys. Rev. 76B, 115409 (2007).

    ADS  Google Scholar 

  5. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.M. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005).

    Article  PubMed  ADS  CAS  Google Scholar 

  6. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  7. A. Akturk and N. Goldsman, J. Appl. Phys. 103, 053702 (2008).

    Article  ADS  CAS  Google Scholar 

  8. C. Lee, X. Wei, J.W. Kysar, and J. Home, Science 321, 385 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  9. I.W. Frank, D.M. Tanenbaum, A.M. Van Der Zande, and P.L. McEuen, J. Vac. Sci. Technol. 25B, 2558 (2007).

    Google Scholar 

  10. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).

    Article  PubMed  CAS  Google Scholar 

  11. O.V. Yazyev and M.I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  12. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, and A.T.C. Johnson, Nano Lett. 9, 1472 (2009).

    Article  PubMed  ADS  CAS  Google Scholar 

  13. S.V. Morozov, K.S. Novoselov, M.I. Katsnelson, F. Schedin, D.C. Elias, J.A. Jaszczak, and A.K. Geim, Phys. Rev. Lett. 100, 016602 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  14. J.H. Chen, C. Jang, S. Adam, M.S. Fuhrer, E.D. Williams, and M. Ishigami, Nat. Phys. 4, 377 (2008).

    Article  CAS  Google Scholar 

  15. J. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, Nature 446, 60 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  16. J.C. Meyer, C. Kisielowski, R. Erni, M.D. Rossell, M.F. Crommie, and A. Zettl, Nano Lett. 8, 3582 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  17. M.Y. Han, P. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  18. I. Gierz, C. Riedl, U. Starke, C.R. Ast, and K. Kern, Nano Lett. 8, 4603 (2008).

    Article  PubMed  ADS  CAS  Google Scholar 

  19. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov, Nat. Mater. 6, 652 (2007).

    Article  PubMed  ADS  CAS  Google Scholar 

  20. S. Adam, E.H. Hwang, V.M. Galitski, and S. Das Sarma, Proc. Natl. Acad. Sci. 104, 18392 (2007).

    Article  PubMed  ADS  Google Scholar 

  21. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Ngyyen, and R.S. Ruoff, Carbon 45, 1558 (2007).

    Article  CAS  Google Scholar 

  22. A. Celzard, J. Mareche, and G. Furdin, Prog. Mater. Sci. 50, 93 (2005).

    Article  CAS  Google Scholar 

  23. K. Tajima, Y. Hino, T. Narushima, and Y. Iguchi, Mater. Trans. JIM 41, 714 (2000).

    CAS  Google Scholar 

  24. E.E. Underwood, Applications of Quantitative Metallography, Mechanical Testing, Vol. 8, Metals Handbook, 8th ed. (American Society for Metals, 1973), p. 37.

  25. K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett. 9, 1058 (2009).

    Google Scholar 

  26. K.K. Chawla, Composite Materials, 2nd ed. (New York: Springer, 1998), p. 193.

    Google Scholar 

  27. P.A. Tipler and G. Mosca, Physics for Scientists and Engineers, 5th ed., Vol. 2 (New York: Freeman, 2004), p. 792.

    Google Scholar 

  28. J. Helsing and A. Helte, J. Appl. Phys. 69, 3583 (1991).

    Article  ADS  CAS  Google Scholar 

  29. J.B. Nelson and D.P. Riley, Proc. Phys. Soc. 57, 477 (1945).

    Article  ADS  CAS  Google Scholar 

  30. P.S. Turner, J. Res. Natl. Bur. Stand. 37, 239 (1946).

    CAS  Google Scholar 

  31. R.A. Schapery, J. Compos. Mater. 2, 311 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jagannadham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sruti, A.N., Jagannadham, K. Electrical Conductivity of Graphene Composites with In and In-Ga Alloy. J. Electron. Mater. 39, 1268–1276 (2010). https://doi.org/10.1007/s11664-010-1208-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1208-2

Keywords

Navigation