Wafer Mapping Using Deuterium Enhanced Defect Characterization

Abstract

Deuterium (as well as other hydrogen isotopes) binds with a wide range of morphological defects in semiconductors and, as such, becomes distributed similarly to those defects. Thus, the deuterium profile within the sample serves as the basis of a technique for defect mapping known as amethyst wafer mapping (AWM). The efficiency of this technique has been demonstrated by evaluation of ion-induced damage in implanted Si, as well as as-grown defects in HgCdTe (MCT) epilayers. The defect tagging or decoration capability of deuterium is largely material independent and applicable to a wide range of defect morphologies. A number of analytical techniques including ion channeling and etch pit density measurements were used to evaluate the AWM results.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. LeClair, Missile Defense Agency, private communication, 2009.

  2. 2.

    W.L. Smith, A. Rosencwaig, D.L. Willenborg, J. Opsal, and M.W. Taylor, Nucl. Instrum. Meth. B 21, 537 (1987).

    Article  Google Scholar 

  3. 3.

    G. Vizkelethy, Handbook of Modern Ion Beam Materials Analysis, ed. J.R. Tesmer and M. Nastasi, contributed editors J.C. Barbour, C.J. Maggiore, and J.W. Mayer (Materials Research Society, Pittsburgh, PA, 1995).

  4. 4.

    D.J. Cherniak and W.A. Lanford, Non-Destructive Elemental Analysis, ed. Z.B. Alfass (New York: Blackwell, 2001), pp. 308–375.

    Google Scholar 

  5. 5.

    J.D. Benson, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, L.O. Bubulac, M. Groenert, P.S. Wijewarnasuriya, G. Brill, Y. Chen, and U. Lee, J. Electron. Mater. 38, 1771 (2009).

    Article  CAS  ADS  Google Scholar 

  6. 6.

    M. Mayer, SIMNRA User’s Guide, Report IPP 9/113 (Garching, Germany: Max-Planck-Institut für Plasmaphysik, 1997).

  7. 7.

    O.W. Holland, S.J. Pennycook, and G.L. Albert, Appl. Phys. Lett. 55, 2503 (1989).

    Article  CAS  ADS  Google Scholar 

  8. 8.

    D.J. Eaglesham, P.A. Stolk, H.-J. Gossmann, and J.M. Poate, Appl. Phys. Lett. 65, 2305 (1994).

    Article  CAS  ADS  Google Scholar 

  9. 9.

    S.T. Picraux, Proceedings of the Materials Research Society 1980 Meeting, Vol. 2, ed. J. Narayan and T.Y. Tan (North-Holland Press, New York, 1981), pp. 1–19.

  10. 10.

    E.E. Haller, Semicond. Sci. Technol. 6, 73 (1991).

    Article  CAS  ADS  Google Scholar 

  11. 11.

    J. Chevallier, W.C. Dautremont-Smith, W.C. Tu, and S.J. Peartion, Appl. Phys. Lett. 47, 108 (1985).

    Article  CAS  ADS  Google Scholar 

  12. 12.

    E.E. Haller, Mat. Res. Soc. Symp. Proc. 808 A1.1.1/H1.1.1 (2004)

  13. 13.

    J.F. Ziegler, J.P. Biersack, and M.D. Ziegler. SRIMThe Stopping and Range of Ions in Matter (SRIM Co., Morrisville, NC, 2008). ISBN 0-9654207-1-X.

  14. 14.

    J.F. Zielger, “Interaction of Ions with Matter,” 2000, http://www.srim.org/.

  15. 15.

    K.F. McCarty, J.A. Nobel, and N.C. Bartelt, Nature 412, 622 (2001).

    Article  CAS  PubMed  ADS  Google Scholar 

  16. 16.

    S. Datz, B.R. Appleton, and C.D. Moak, Channeling: Theory, Observation and Applications, ed. D.V. Morgan (Wiley, New York, 1973).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to K. Hossain.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hossain, K., Holland, O., Hellmer, R. et al. Wafer Mapping Using Deuterium Enhanced Defect Characterization. Journal of Elec Materi 39, 930–935 (2010). https://doi.org/10.1007/s11664-010-1162-z

Download citation

Keywords

  • AWM
  • HgCdTe
  • hydrogenation
  • IRFPA
  • defect tagging