Advertisement

Journal of Electronic Materials

, Volume 39, Issue 7, pp 930–935 | Cite as

Wafer Mapping Using Deuterium Enhanced Defect Characterization

  • K. Hossain
  • O.W. Holland
  • R. Hellmer
  • B. VanMil
  • L.O. Bubulac
  • T.D. Golding
Article

Abstract

Deuterium (as well as other hydrogen isotopes) binds with a wide range of morphological defects in semiconductors and, as such, becomes distributed similarly to those defects. Thus, the deuterium profile within the sample serves as the basis of a technique for defect mapping known as amethyst wafer mapping (AWM). The efficiency of this technique has been demonstrated by evaluation of ion-induced damage in implanted Si, as well as as-grown defects in HgCdTe (MCT) epilayers. The defect tagging or decoration capability of deuterium is largely material independent and applicable to a wide range of defect morphologies. A number of analytical techniques including ion channeling and etch pit density measurements were used to evaluate the AWM results.

Keywords

AWM HgCdTe hydrogenation IRFPA defect tagging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. LeClair, Missile Defense Agency, private communication, 2009.Google Scholar
  2. 2.
    W.L. Smith, A. Rosencwaig, D.L. Willenborg, J. Opsal, and M.W. Taylor, Nucl. Instrum. Meth. B 21, 537 (1987).CrossRefGoogle Scholar
  3. 3.
    G. Vizkelethy, Handbook of Modern Ion Beam Materials Analysis, ed. J.R. Tesmer and M. Nastasi, contributed editors J.C. Barbour, C.J. Maggiore, and J.W. Mayer (Materials Research Society, Pittsburgh, PA, 1995).Google Scholar
  4. 4.
    D.J. Cherniak and W.A. Lanford, Non-Destructive Elemental Analysis, ed. Z.B. Alfass (New York: Blackwell, 2001), pp. 308–375.Google Scholar
  5. 5.
    J.D. Benson, P.J. Smith, R.N. Jacobs, J.K. Markunas, M. Jaime-Vasquez, L.A. Almeida, A. Stoltz, L.O. Bubulac, M. Groenert, P.S. Wijewarnasuriya, G. Brill, Y. Chen, and U. Lee, J. Electron. Mater. 38, 1771 (2009).CrossRefADSGoogle Scholar
  6. 6.
    M. Mayer, SIMNRA User’s Guide, Report IPP 9/113 (Garching, Germany: Max-Planck-Institut für Plasmaphysik, 1997).Google Scholar
  7. 7.
    O.W. Holland, S.J. Pennycook, and G.L. Albert, Appl. Phys. Lett. 55, 2503 (1989).CrossRefADSGoogle Scholar
  8. 8.
    D.J. Eaglesham, P.A. Stolk, H.-J. Gossmann, and J.M. Poate, Appl. Phys. Lett. 65, 2305 (1994).CrossRefADSGoogle Scholar
  9. 9.
    S.T. Picraux, Proceedings of the Materials Research Society 1980 Meeting, Vol. 2, ed. J. Narayan and T.Y. Tan (North-Holland Press, New York, 1981), pp. 1–19.Google Scholar
  10. 10.
    E.E. Haller, Semicond. Sci. Technol. 6, 73 (1991).CrossRefADSGoogle Scholar
  11. 11.
    J. Chevallier, W.C. Dautremont-Smith, W.C. Tu, and S.J. Peartion, Appl. Phys. Lett. 47, 108 (1985).CrossRefADSGoogle Scholar
  12. 12.
    E.E. Haller, Mat. Res. Soc. Symp. Proc. 808 A1.1.1/H1.1.1 (2004)Google Scholar
  13. 13.
    J.F. Ziegler, J.P. Biersack, and M.D. Ziegler. SRIMThe Stopping and Range of Ions in Matter (SRIM Co., Morrisville, NC, 2008). ISBN 0-9654207-1-X.Google Scholar
  14. 14.
    J.F. Zielger, “Interaction of Ions with Matter,” 2000, http://www.srim.org/.
  15. 15.
    K.F. McCarty, J.A. Nobel, and N.C. Bartelt, Nature 412, 622 (2001).CrossRefPubMedADSGoogle Scholar
  16. 16.
    S. Datz, B.R. Appleton, and C.D. Moak, Channeling: Theory, Observation and Applications, ed. D.V. Morgan (Wiley, New York, 1973).Google Scholar

Copyright information

© TMS 2010

Authors and Affiliations

  • K. Hossain
    • 1
  • O.W. Holland
    • 1
  • R. Hellmer
    • 1
  • B. VanMil
    • 1
  • L.O. Bubulac
    • 2
    • 3
  • T.D. Golding
    • 1
  1. 1.Amethyst Research, Inc.ArdmoreUSA
  2. 2.RAND CorporationSanta MonicaUSA
  3. 3.Night Vision and Electronic Sensors Directorate (NVESD)Fort BelvoirUSA

Personalised recommendations