Skip to main content

Thermoelectric Properties of Polycrystalline SrZn2Sb2 Prepared by Spark Plasma Sintering

Abstract

Compact polycrystalline samples of SrZn2Sb2 [space group \( P\overline{3} m1 \), a = 4.503(1) Å, c = 7.721(1) Å] were prepared by spark plasma sintering. Thermoelectric performance, Hall effect, and magnetic properties were investigated in the temperature range from 2 K to 650 K. The thermoelectric figure of merit ZT was found to increase with temperature up to ZT = 0.15 at 650 K. At this temperature the material showed a high Seebeck coefficient of +230 μV K−1, low thermal conductivity of 1.3 W m−1 K−1, but rather low electrical conductivity of 54 S cm−1, together with a complex temperature behavior. SrZn2Sb2 is a diamagnetic p-type conductor with a carrier concentration of 5 × 1018 cm−3 at 300 K. The electronic structure was calculated within the density-functional theory (DFT), revealing a low density of states (DOS) of 0.43 states eV−1 cell−1 at the Fermi level.

References

  1. G.S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).

    CAS  Google Scholar 

  2. G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Nat. Mater. 3, 458 (2004).

    CAS  Article  ADS  PubMed  Google Scholar 

  3. J. Snyder and D. Starkll, 21st International Conference on Thermoelectrics (Long Beach, CA, USA, 2002).

  4. H. Zhang, J.T. Zhao, Yu. Grin, X.J. Wang, M.B. Tang, Z.Y. Man, H.H. Chen, and X.X. Yang, J. Chem. Phys. 129, 164713 (2008).

    Article  ADS  PubMed  Google Scholar 

  5. H. Zhang, L. Fang, M.-B. Tang, H.-H. Chen, X.-X. Yang, X.-X. Guo, J.-T. Zhao, and Y. Grin, Intermetallics 18, 193 (2010).

    CAS  Article  Google Scholar 

  6. X.J. Wang, M.B. Tang, J.T. Zhao, H.H. Chen, and X.X. Yang, Appl. Phys. Lett. 90, 232107 (2007).

    Article  ADS  Google Scholar 

  7. F. Gascoin, S. Ottensmann, D. Stark, S.M. Haile, and G.J. Snyder, Adv. Funct. Mater. 15, 1860 (2005).

    CAS  Article  Google Scholar 

  8. H. Zhang, M. Baitinger, M.B. Tang, Z.Y. Man, H.H. Chen, X.X. Yang, Y. Liu, L. Chen, Yu. Grin, and J.T. Zhao, Dalton Trans. 39, 1101 (2010).

    CAS  Article  PubMed  Google Scholar 

  9. X.J. Wang, M.B. Tang, H.H. Chen, X.X. Yang, J.T. Zhao, U. Burkhardt, and Yu. Grin, Appl. Phys. Lett. 94, 092106 (2009).

    Article  ADS  Google Scholar 

  10. C. Yu, T.J. Zhu, S.N. Zhang, X.B. Zhao, J. He, Z. Su, and T.M. Tritt, J. Appl. Phys. 104, 013705 (2008).

    Article  ADS  Google Scholar 

  11. E.S. Toberer, A.F. May, C.J. Scanlon, and G.J. Snyder, J. Appl. Phys. 105, 63701 (2009).

    Article  Google Scholar 

  12. A. Mewis, Z. Naturforsch. B33, 382 (1978).

    Google Scholar 

  13. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, Z. Kristalogrl. 220, 567 (2005).

    CAS  Article  Google Scholar 

  14. L.G. Akselrud, P.Yu. Zavalii, Yu. Grin, V.K. Pecharsky, B. Baumgartner, and E. Wölfel, Mater. Sci. Forum 133–136, 335 (1993).

    Article  Google Scholar 

  15. G.K.H. Madsen, J. Am. Chem. Soc. 128, 12140 (2006).

    CAS  Article  PubMed  Google Scholar 

  16. E.S. Toberer, A.F. May, B.C. Melot, E. Flage-Larsen, and G.J. Snyder, Dalton Trans. 39, 1046 (2010).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support by the National Basic Research Program of China under Project (2007CB607503) and the MPG-CAS Partner Group Program is gratefully acknowledged. We thank the Kompetenzgruppen Metallografie, Struktur and Chemische Analyse at MPI-CPfS.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Tai Zhao or Yuri Grin.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Zhang, H., Tang, MB., Schnelle, W. et al. Thermoelectric Properties of Polycrystalline SrZn2Sb2 Prepared by Spark Plasma Sintering. J. Electron. Mater. 39, 1772–1776 (2010). https://doi.org/10.1007/s11664-010-1151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-010-1151-2

Keywords

  • SrZn2Sb2
  • Thermoelectric performance
  • Hall effect
  • magnetic properties